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Optimization of applications

• Execution time T  of the program 
 

T Te Tm+ Niti∑ Nmtm∑+= =  

 
Te : time to execute instructions 

Tm : time to move data (and instructions) between CPU and memory 

Ni : number of instructions executed 

ti : (average) time to execute one instruction 

Nm : number of memory operations 

tm : (average) time of one memory operation 

- To get the execution time shorter the four factors Ni , ti , Nm , and tm  should be cut down: 
 

Ni : optimize the code (SW) 

ti : increase processor speed, pipelines, parallel execution of instructions, ... (HW) 

Nm : optimize the code (SW) 

tm : cache memories, prefetch, ... (HW)   
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Optimization of applications
• Cache memories 

• Processor speeds have increased much faster than the speed of main memory  
→ memory access has become the bottleneck  
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Optimization of applications

- Fast cache memories are used to store data (and instructions) inside or near the processor1. 
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transfer

block
transfer

block
transfer

internal external

 

- Relative speeds in the memory hierarchy2

Level Access time Typical size Managed by

CPU registers 1-3 ns 1 kB Compiler

L1 cache 2-8 ns 8-128 kB Hardware

L2 cache 5-12 ns 0.1-1 MB Hardware

Main memory 10-60 ns 1-8 GB OS

Disk 3-10 ms 100-1000 GB OS/user

1. In the virtual memory system the calculation of physical addresses is also cached by using the translation lookaside buffer (TLB).
2. Adapted from http://arstechnica.com/articles/paedia/cpu/caching.ars/
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Optimization of applications
• Why do these small caches help to increase the execution speed?

- There is locality in the memory access patterns of programs:
- Temporal locality:  

The most recently accessed memory locations are likely to be accessed again in the future.
- Spatial locality:  

Memory near to those locations that have recently been accessed are likely to be accessed again in the future.  

- Main memory access with caches.
- E.g. a load instruction: load a word from memory location A  to CPU register R1 . 

A in L1

R1 ← A

Read A 

no

yes

A in L2

yes

Update L1

no Read A from 

Update L1,L2

main memory

from L1
Read A 
from L2

cache hit

cache miss cache miss

cache hit

Note that when a cache is updated 
a larger chunk of consecutive 
words is read in (a cache line).  A 
typical cache line size is tens of 
bytes. Each line consists of the ad-
dress of the memory block (tag), 
flags giving information on the us-
age of the line and the memory 
content.

Because cache memories are 
small, old entries must be deleted 
(evicted) by applying a suitable al-
gorithm (eviction policy). In prac-
tice an approximation of a LRU 
(least recently used)  algorithm is 
used.

address dataflags
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- The percentage of cache hits depends on the application. 
- Commonly one can expect hit percentage of the order of 90%.
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Optimization of applications
- Mapping of main memory blocks to cache lines can be done in three different ways (in all cases you have to store also 

the memory block address to the cache array): 
1) Direct mapping: (cache line) = (address of the block) mod (number of lines) 
2) Fully associative: A block can be stored in any cache line. 
3) N-way set associative: Combination of 1 and 2:  

a memory block can be mapped to any line within a bunch of cache lines. 
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Optimization of applications
• A simple example of cache effects
program cachetest
  use sizes
  implicit none
  integer :: n,m,mmax
  real(rk) :: t0,t1,z,x(NMAX)

  forall (n=1:NMAX) x(n)=n
  mmax=TOTAL/NMAX
  call cpu_time(t0)
  do m=1,mmax
     do n=1,NMAX
        z=z+x(n)
     end do
  end do
  call cpu_time(t1)
  write(6,’(i12,2g16.8,i10,g16.6)’) &
       & NMAX,(t1-t0),(t1-t0)/ &
       & (mmax*NMAX),mmax,z
end program cachetest

Run script (runcachetest)
#! /bin/bash

TOTAL=1000000000

F90=ifort

FOPT=”-O3”

$F90 $FOPT -c sizes.f90

for NMAX in ̀ gawk ‘BEGIN {for (n=1;n<=2^25;n*=2) printf “%d “,int(n)}’`

do

    cat cachetest.f90 | sed “s/NMAX/${NMAX}/g;s/TOTAL/${TOTAL}/g” \

           > cachetest_tmp_$$.f90

    $F90 $FOPT cachetest_tmp_$$.f90 #sizes.o

    nice ./a.out

done

rm -f cachetest_tmp_$$.f90

System L2 cache sizea

a. Marked with vertical lines 
in the plot

AMD Duron 64 kB

HP Alpha 8 MB

Intel Celeron 128 kB

AMD Athlon 256 kB

AMD Opteron 1 MB

Intel Core2 Duo 4 MB
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Optimization of applications
• Pipelines 

• Many CPU clock cycles are needed to execute a single machine instruction.

1 2 3 4 5

clock tick

- Execution consists of many stages; typically the following 
1) Instruction fetch read instruction from memory 
2) Instruction decode recognize and decode the instruction 
3) Operand fetch operands are read from memory or registers 
4) Execute  
5) Writeback write results back to memory or registers 

- The idea of speeding up the execution of code is to have many instructions proceeding simultaneously in the pipeline.

clock tick

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

instruction 1

instruction 2

instruction 3

instruction 4

instruction 5

1 2 3 4 5instruction 6
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Optimization of applications
- In this way we get one instruction per CPU clock cycle when the pipeline is full.
- There is a latency in filling the pipeline. 

- Many issues, however, make the optimal use of pipelines difficult. 
 
1) Instructions use different amount of cycles. → Other parts of the pipeline must wait.  
2) Instructions upstream the pipeline may need the results of instructions downstream. 
3) Branches (jumps) in code make the rest of the pipeline useless.  This is particulary true for conditional branches. 

- The effect of issues 1 and 2 can be reduced by the out of order execution of instructions.
- Instructions are reordered in such a way that the pipeline is optimally filled and at the same time data integrity is main-

tained (i.e. results are right!).
- A simple example1 (in a fictive assembler): 

load r0,a ; load register r0 from memory location a
add r2,r0,r3 ; r2 ← r0+r3
load r1,b ; load register r1 from memory location b
sub r2,r1,r2 ; r2 ← r1-r2

load r0,a
load r1,b
add r2,r0,r3
sub r2,r1,r2

Original code Executed code

Pipeline stalled because the contents 
of r0 is not available here.

 

- The task of reordering the instructions is done by both the hardware and the compiler.
- This is based on the data flow analysis of the code: Deduce which instructions are dependent on each other’s results 

or data.  

1. From K. Dowd, High Performance Computing, O’Reilly & Associates, 1993.
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Optimization of applications
- There are many ways to attempt to decrease the performance penalty of branches.

branch?

no

yes

- By branch prediction the processor makes an educated guess which path is taken in 
the case of a conditional branch and begins to fetch instructions from that address.

- Instructions can even be executed (speculative execution). However, if the branch 
doesn’t go as the processor expected, it must undo or discard the results of these 
instructions.

- The guess can be a static one (always either yes or no) or be based on the instruction 
opcode or on some statistics from previous executions of the current instruction.

- If the guess was wrong the pipeline must be flushed and filled again from the right 
source.  

• The processor speed can be further increased by adding more pipelines that can execute instructions in parallel (instruction- 
level parallelism):

clock tick

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

instruction 1

instruction 2

instruction 3

instruction 4

instruction 5

1 2 3 4 5instruction 6

- This is called superscalar architecture.
- Most modern processors (including the IA-32, Intel 64 and IA-64) are superscalar. 
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Optimization of applications
- In order to be able to execute instructions concurrently there must not be any dependences between them.

- This must be handled by the processor control circuitry which (you can imagine) becomes quite complex. 

• Examples:  

- Intel Pentium architecture1 
  

- Three-way superscalar (3 instructions/clock cycle) 
- 12-stage superpipelines supporting out-of-order execution 
- Level 1 cache: 8 kB instruction, 8 kB data 
- Level 2 cache: varies 
- Deep branch prediction, dynamic data flow analysis, speculative execution 

- AMD64 
 

- Three execution engines for integer and floating point operations 
- 12-stage pipeline for integers 17-stage pipeline for floating point 
- Level 1 cache: 64 kB instruction, 64 kB data 
- Level 2 cache: 512, 1024 kB 
 

1. From Intel Architecture Software Developer’s Manual
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Optimization of applications
• Tuning (or optimization) of applications 

• A good application fulfills the requirements of locality of memory access and parallelism in the code.
- Modern compilers can do a lot to improve the execution speed of an application.
- However, programmer can also affect the speed of his code and the ability of the compiler to optimize it. 

• First we see what basic optimizations compilers normally do. 
Optimizations can be swithced on and off by the compiler option. 
- They are in many cases of the for  -On, where O is capital oh not zero, and n=0,..,3 or 5.

- These options normally switch on groups of optimization. 
- There may be individual options for each optimization technique. 

- In the case of ifort the general options do the following:
       -O0    Disables all -O<n> optimizations.  On IA-32 and Intel(R) EM64T systems, this  option  sets  the
              -fp option.

       -O1    On  IA-32  and Intel(R) EM64T systems, enables optimizations for speed. Also disables intrinsic
              recognition and the -fp option. This option is the same as the -O2 option.

       -O2  or  -O
              This option is the default for optimizations.  However, if -g is specified, the default is -O0.

              On IA-32 and Intel(R) EM64T systems, this option is the same as the -O1 option.

       -O3    Enables -O2 optimizations plus more  aggressive  optimizations,  such  as  prefetching,  scalar
              replacement,  and  loop  transformations. Enables optimizations for maximum speed, but does not
              guarantee higher performance unless loop and memory access transformations take place.

              On IA-32 and Intel(R) EM64T systems, when the -O3 option is used with the -ax and  -x  options,
              it  causes the compiler to perform more aggressive data dependency analysis than for -O2, which
              may result in longer compilation times.

              On Itanium-based systems, the -O3 option enables optimizations for technical computing applica-
              tions (loop-intensive code): loop optimizations and data prefetch.
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Optimization of applications
- If you are curious enough you can output the assembler code generated by the ifort compiler as shown below.

1: program doloop
2:  integer :: i,j
3:  j=0
4:  do i=1,1234
5:     j=j+i
6:  end do
7:  print *,j
8: end program doloop

progs> ifort -fsource-asm -S doloop.f90
progs> less doloop.s
...

.globl MAIN__
MAIN__:
..B1.1:                         # Preds ..B1.0
;;; program doloop
        pushl     %ebp                                          #1.8
        movl      %esp, %ebp                                    #1.8
        andl      $-16, %esp                                    #1.8
        subl      $48, %esp                                     #1.8
        call      __intel_proc_init                             #1.8
        push      $LITPACK_0                                    #1.8
...
;;;   integer :: i,j
;;;   j=0
        xorl      %edx, %edx                                    #3.2
;;;   do i=1,1234
        movl      $1, %eax                                      #4.2
                                # LOE eax edx ebx esi edi
..B1.3:                         # Preds ..B1.3 ..B1.2
;;;      j=j+i
        addl      %eax, %edx                                    #5.5
;;;   end do
        lea       1(%edx,%eax), %edx                            #6.2
        lea       2(%edx,%eax), %ecx                            #6.2
        lea       3(%ecx,%eax), %edx                            #6.2
        lea       4(%edx,%eax), %edx                            #6.2
        lea       5(%edx,%eax), %edx                            #6.2
        addl      $6, %eax                                      #6.2
        cmpl      $1228, %eax                                   #6.2
        jle       ..B1.3        # Prob 99%                      #6.2
                                # LOE eax edx ebx esi edi
..B1.4:                         # Preds ..B1.3
;;;   print *,j
        movl      $0, (%esp)                                    #7.2
...

doloop.f90
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Optimization of applications

- gfortran has similar optimization options1 though the defaults and details are different:
 -O
 -O1 Optimize.  Optimizing compilation takes somewhat more time, and a lot more memory for a large
     function.

     With -O, the compiler tries to reduce code size and execution time, without performing any
     optimizations that take a great deal of compilation time.

     -O turns on the following optimization flags: -fdefer-pop -fdelayed-branch
     -fguess-branch-probabil- ity -fcprop-registers -floop-optimize -fif-conversion -fif-conversion2
     -ftree-ccp -ftree-dce -ftree-dominator-opts -ftree-dse -ftree-ter -ftree-lrs -ftree-sra
     -ftree-copyrename -ftree-fre -ftree-ch -funit-at-a-time -fmerge-constants

     -O also turns on -fomit-frame-pointer on machines where doing so does not interfere with
     debugging.

 -O2 Optimize even more.  GCC performs nearly all supported optimizations that do not involve a
     space- speed tradeoff.  The compiler does not perform loop unrolling or function inlining when
     you specify -O2.  As compared to -O, this option increases both compilation time and the
     performance of the generated code.

     -O2 turns on all optimization flags specified by -O.  It also turns on the following
     optimization flags: -fthread-jumps -fcrossjumping -foptimize-sibling-calls -fcse-follow-jumps
     -fcse-skip-blocks -fgcse -fgcse-lm -fexpensive-optimizations -fstrength-reduce
     -frerun-cse-after-loop -fre- run-loop-opt -fcaller-saves -fpeephole2 -fschedule-insns
     -fschedule-insns2 -fsched-interblock -fsched-spec -fregmove -fstrict-aliasing
     -fdelete-null-pointer-checks -freorder-blocks -fre- order-functions -falign-functions
     -falign-jumps -falign-loops -falign-labels -ftree-vrp -ftree-pre

 -O3 Optimize yet more.  -O3 turns on all optimizations specified by -O2 and also turns on the -fin-
     line-functions, -funswitch-loops and -fgcse-after-reload options.

 -O0 Do not optimize.  This is the default.
Note: Most other compilers have some 
optimization as default.

1. These can be found in the gcc manual because gfortran is just a front-end of the GNU compiler.
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Optimization of applications

- gfortran/gcc has a huge list of detailed optimization options1

-falign-functions=n -falign-jumps=n falign-labels=n -falign-loops=n -fbounds-check -fmudflap
-fmudflapth -fmudflapir fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize
-fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves -fcprop-registers
-fcse-follow-jumps -fcse-skip-blocks -fcx-limited-range -fdata-sections -fdelayed-branch
-fdelete-null-pointer-checks -fearly-inlining -fexpensive-optimizations -ffast-math -ffloat-store
-fforce-addr -ffunction-sections -fgcse -fgcse-lm -fgcse-sm -fgcse-las -fgcse-after-reload
-fcrossjumping -fif-conversion -fif-conversion2 -finline-functions -finline-functions-called-once
-finline-limit=n -fkeep-inline-functions -fkeep-static-consts -fmerge-constants
-fmerge-all-constants fmodulo-sched -fno-branch-count-reg -fno-default-inline -fno-defer-pop
-fmove-loop-invariants -fno-function-cse -fno-guess-branch-probability fno-inline -fno-math-errno
-fno-peephole -fno-peephole2 -funsafe-math-optimizations -funsafe-loop-optimizations
-ffinite-math-only fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move foptimize-sibling-calls -fprefetch-loop-arrays
-fprofile-generate -fprofile-use -fregmove -frename-registers -freorder-blocks
-freorder-blocks-and-partition -freorder-functions -frerun-cse-after-loop -frounding-math
-frtl-abstract-sequences -fschedule-insns -fschedule-insns2 -fno-sched-interblock -fno-sched-spec
-fsched-spec-load -fsched-spec-load-dangerous -fsched-stalled-insns=n -fsched-stalled-insns-dep=n
-fsched2-use-superblocks -fsched2-use-traces -fsee -freschedule-modulo-scheduled-loops
-fsection-anchors -fsignaling-nans -fsingle-precision-constant -fstack-protector
-fstack-protector-all fstrict-aliasing -fstrict-overflow -ftracer -fthread-jumps -funroll-all-loops
-funroll-loops -fpeel-loops -fsplit-ivs-in-unroller -funswitch-loops
-fvariable-expansion-in-unroller -ftree-pre -ftree-ccp -ftree-dce -ftree-loop-optimize
-ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -fivopts -ftree-dominator-opts -ftree-dse
-ftree-copyrename -ftree-sink ftree-ch -ftree-sra -ftree-ter -ftree-lrs -ftree-fre
-ftree-vectorize ftree-vect-loop-version -ftree-salias -fipa-pta -fweb -ftree-copy-prop
-ftree-store-ccp -ftree-store-copy-prop -fwhole-program -param name=value -O -O0 -O1 -O2 -O3 -Os

- In most cases using the bundled options -On is enough.

1. See e.g. http://gcc.gnu.org/onlinedocs/
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Optimization of applications

- Now we go through the most common and simple optimization techniques performed by compilers1. 

- Common expression elimination
- Different variables that get identical expressions assigned to them are replaced by a single variable.

t1 = ((j-1)25+(i-1))*4
t2 = ((j-1)25+(i-1))*4
a(t1)=b(t2)

t = ((j-1)25+(i-1))*4
a(t)=b(t)

 

- Strength reduction
- Replacing an expensive operation with a cheaper one:

real :: x,y
integer :: j,k

y = x**2
j = k*2

real :: x,y
integer :: j,k

y = x*x
j = k+k

 

- Constant folding
- As much as possible is computed at compile time

program main
integer,parameter::i=10
integer :: k
k=200
j=i+k
print *,j
end program main

program main
integer,parameter::j=210
print *,j
end program main

1. Partly adopted from K. Dowd, High Performance Computing, O’Reilly & Associates, 1993.
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Optimization of applications
- Dead code removal

- Often the program contains code that can never be reached and can be safely removed. 
- Also statements that produce results that are never used can be removed.

program main
integer :: k
k=2
print *,k
stop
k=4
print *,j
end program main

program main
integer :: k
k=2
print *,k
end program main

 

- Variable renaming
- If recycling of a variable is observed the different (independent) uses of the variable are modified so that the parallel-

ism is more obvious.

x=y*z
q=r+x+x
x=a+b

x0=y*z
q=r+x0+x0
x=a+b

 

- Copy propagation
- 

x=y
z=1.0+x

x=y
z=1.0+y

Eliminate useless assignments that may cause dependencies.
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Optimization of applications
- Loop invariant code motion

- Remove code that does not depend on the loop iteration outside the loop.

do i=1,n
a(i)=b(i)+c*d
e=g(k)

end do

tmp=c*d
do i=1,n

a(i)=b(i)+tmp
end do
e=g(k)

 

- Induction variable simplification
- Loops may contain induction variables. Their value is a linear function of the loop iteration count.

do i=1,n
k=i*4+m

end do

k=m
do i=1,n

k=k+4
end do

- This optimization is actually applied in calculating array element addresses.
- Memory address ai  of array element A(i) is computed as  

ai base A( ) i 1–( ) size A( )×+=
- However, in a loop all this need not be computed:

 
do i=1,n 

 
... 

end do

ai base A( ) size A( )–=

ai ai size A( )+=

 

- Register variable detection
- Based on the data flow analysis the compiler decides which variables should be kept in the CPU registers.

 Tools for High Performance Computing 2011:   4. Optimization of applications                                                                                                                                               18

Optimization of applications
• Not all optimization is left to the compiler. In these cases it is the programmer that has to do the tuning.

- Later we will deal with optimization of loops and memory access.
- Now we discuss a few basic methods to speed up the program executions 

- One goal, of course,  is to remove code that consumes CPU time but does not contribute to results.
- Keeping in mind the pipelines and the parallel execution capabilities of modern processors we also have to remove or 

rewrite those parts of the code that would prevent the utilization of parallel execution. 

- Subroutine or function calls always include some overhead
- Pushing parameters to stack, jumping to the routine, popping the stack and returning.
- Calls may prevent the instruction-level parallelization.
- Solution: inline functions by hand (or let the compiler do it). 

- Branches within loops
- Most CPU time in scientific applications is spent in loops. So, try to move all unnecessary code outside loops.
- Branches add dependencies that prevent parallelization. 

- Loop invariant conditionals
- The conditional does not depend on the loop iteration → Change the order of the conditional and the loop.

  do i=1,k
     if (n==0) then
        a(i)=a(i)+b(i)*c
     else
        a(i)=0
     end if
  end do

  if (n==0) then
     do i=1,k
        a(i)=a(i)+b(i)*c
     end do
  else
     do i=1,k
        a(i)=0
     end do
  end if
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Optimization of applications
- Loop index dependent conditionals

- The conditional is true for certain ranges of the loop index variables and false for others but there is a pattern that we 
can utilize.

  do i=1,n
     do j=1,n
        if (j<1) then
           a(j,i)=a(j,i)+b(i,j)*c
        else
           a(j,i)=0
        end if
     end do
  end do

  do i=1,n
     do j=1,i-1
        a(j,i)=a(j,i)+b(j,i)*c
     end do
     do j=i,n
        a(j,i)=0
     end do
  end do

- Could we use F90 array constructs in this case? 

- Independent loop conditionals
- Here the conditionals of different iterations are independent of each other. 
- In the example below not much can be done. However, by loop unrolling some parallelism could be achieved.

do i=1,n
do j=1,n

if (b(j,i)>1.0) a(j,i)=a(j,i)+b(j,i)*c
enddo

enddo

do i=1,n
do j=1,n,2

if (b(j  ,i)>1.0) a(j  ,i)=a(j  ,i)+b(j  ,i)*c
if (b(j+1,i)>1.0) a(j+1,i)=a(j+1,i)+b(j+1,i)*c

enddo
enddo
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Optimization of applications
- Dependent loop conditionals

- Loops with if-statements can have dependencies between iterations.
- Not much can be done to these; for example

do i=1,n
if (x<a(i)) x=x+b(i)

enddo

By unrolling this we see that the 
next iteration can not be started be-
fore the previous one has finished.

if (x<a(1)) x=x+b(1)
if (x<a(2)) x=x+b(2)
if (x<a(3)) x=x+b(3)
if (x<a(4)) x=x+b(4)
if (x<a(5)) x=x+b(5)
if (x<a(6)) x=x+b(6)
...

: 

- Reduction operations
- Vector and matrix reduction operations are a special case of loop constructs. 
- If possible, use the F90/F95 array constructs or intrinsic functions  (where, forall, matmul, dot_product, sum, 
maxloc, maxval, any, all, count,...)

- It is possible to introduce some parallelism into these operations. For example computing the maximum value of ele-
ments of an array:

x=-huge(x)
do n=1,nmax

if (a(n)>=x) x=a(n)
enddo

x0=-huge(x); x1=-huge(x)
do n=1,nmax,2

if (a(n  )>=x0) x0=a(n  )
if (a(n+1)>=x1) x1=a(n+1)

enddo
if (x0>=x1) then

x=x0
else

x=x1
endif
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Optimization of applications
- Example

program imaximum
  use sizes
  implicit none
  real(rk) :: t1,t2
  integer :: a(NMAX),i,x
  forall (i=1:NMAX)
     a(i)=mod(i,M)+mod(i+1,K)
  end forall
  x=-huge(x)
  call cpu_time(t1)
  do i=1,NMAX
     if (a(i)>=x) x=a(i)
  end do
  call cpu_time(t2)
  print *,’imaximum  ’,t2-t1,x
end program imaximum

program imaximum2
  use sizes
  implicit none
  real(rk) :: t1,t2
  integer :: a(NMAX),i,x,x0,x1
  forall (i=1:NMAX)
     a(i)=mod(i,M)+mod(i+1,K)
  end forall
  x0=-huge(x)
  x1=-huge(x)
  call cpu_time(t1)
  do i=1,NMAX,2
     if (a(i  )>=x0) x0=a(i  )
     if (a(i+1)>=x1) x1=a(i+1)
  end do

x=max(x0,x1)
  call cpu_time(t2)
  print *,’imaximum2 ’,t2-t1,x
end program imaximum2

program imaximum4
  use sizes
  implicit none
  real(rk) :: t1,t2
  integer :: a(NMAX),i,x,x0,x1,x2,x3
  forall (i=1:NMAX)
     a(i)=mod(i,M)+mod(i+1,K)
  end forall
  x0=-huge(x)
  x1=-huge(x)
  x2=-huge(x)
  x3=-huge(x)
  call cpu_time(t1)
  do i=1,NMAX,4
     if (a(i  )>=x0) x0=a(i  )
     if (a(i+1)>=x1) x1=a(i+1)
     if (a(i+2)>=x2) x2=a(i+2)
     if (a(i+3)>=x3) x3=a(i+3)
  end do
  x=max(x0,x1,x2,x3)
  call cpu_time(t2)
  print *,’imaximum4 ’,t2-t1,x
end program imaximum4

progs> make -f Makefile.imaximum
rm -f imaximum imaximum2 imaximum4
ifort -O0 -fpp -DNMAX=50000000 -DM=20 -DK=2001 -o imaximum imaximum.f90
ifort -O0 -fpp -DNMAX=50000000 -DM=20 -DK=2001 -o imaximum2 imaximum2.f90
ifort -O0 -fpp -DNMAX=50000000 -DM=20 -DK=2001 -o imaximum4 imaximum4.f90
./imaximum ; ./imaximum2 ; ./imaximum4
 imaximum    0.163975000000000             2019
 imaximum2   0.142978000000000             2019
 imaximum4   0.138979000000000             2019
progs> make -f Makefile.imaximum clean
rm -f imaximum imaximum2 imaximum4
progs> make -f Makefile.imaximum
rm -f imaximum imaximum2 imaximum4
ifort -unroll4 -fpp -DNMAX=50000000 -DM=20 -DK=2001 -o imaximum imaximum.f90
ifort -unroll4 -fpp -DNMAX=50000000 -DM=20 -DK=2001 -o imaximum2 imaximum2.f90
ifort -unroll4 -fpp -DNMAX=50000000 -DM=20 -DK=2001 -o imaximum4 imaximum4.f90
./imaximum ; ./imaximum2 ; ./imaximum4
 imaximum    0.116983000000000             2019
 imaximum2   0.115982000000000             2019
 imaximum4   0.119982000000000             2019

Note the use of ifort options 
-fpp  (preprocessor) and -D (de-
fine a symbol).
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Optimization of applications
- The previous was an example of loop unrolling.

- Loop stride is larger than one and part of the loop is written out explicitly. E.g. unrolling a loop to a depth of 4:

do n=1,NMAX
   a(n)=a(n)+b(n)*c
end do

m=mod(NMAX,4)
do n=1,m
   a(n)=a(n)+b(n)*c
end do

do n=m+1,NMAX,4
   a(n  )=a(n  )+b(n  )*c
   a(n+1)=a(n+1)+b(n+1)*c
   a(n+2)=a(n+2)+b(n+2)*c
   a(n+3)=a(n+3)+b(n+3)*c
end do

- By unrolling loops one can save a few cycles by decreasing the effect of loop overhead.
- More important is the fact that unrolling generates a block of code within the loop which give the compiler a chance to 

better optimize it: pipelining and instruction level parallelization. 

- Unrolling works best for long (i.e. many iterations) loops with simple content.
- No subroutine calls: Call overhead, prevents optimization. (However: inlining, see below.)
- No branches: Disrupt instruction pipelining.
- Not for fat loops (loops with a lot of stuff between do i=... and end do): They already have a big block of code for 

the compiler to optimize. 

- In many cases the compiler does the unrolling. 



 Tools for High Performance Computing 2011:   4. Optimization of applications                                                                                                                                               23

Optimization of applications
- In the case of many loops within each other (loop nests) one can also try to unroll not the innermost but one or more 

outer loops.
program unroll_outer
  use sizes
  implicit none
  integer,parameter :: NMAX=3000,MMAX=3000,K=10
  real(rk) :: a(NMAX,MMAX),b(NMAX,MMAX),c=11.0
  integer ::  n,m,nn
  real(rk) :: t1,t2

  !---------------------------------

  forall (n=1:NMAX,m=1:MMAX)
     a(n,m)=mod(n+1,K)+mod(m+1,K)
     b(n,m)=mod(n,K+10)+mod(m,K-5)
  end forall

  call cpu_time(t1)
  nn=mod(NMAX,4)
  do n=1,nn
     do m=1,MMAX
        a(n,m)=a(n,m)+b(n,m)*c
     end do
  end do
  do n=nn+1,NMAX,4
     do m=1,MMAX
        a(n  ,m)=a(n  ,m)+b(n  ,m)*c
        a(n+1,m)=a(n+1,m)+b(n+1,m)*c
        a(n+2,m)=a(n+2,m)+b(n+2,m)*c
        a(n+3,m)=a(n+3,m)+b(n+3,m)*c
     end do
  end do
  call cpu_time(t2)
  print *,sum(a),t2-t1

  !--------------------------------

  forall (n=1:NMAX,m=1:NMAX)
     a(n,m)=mod(n+1,K)+mod(m+1,K)
     b(n,m)=mod(n,K+10)+mod(m,K-5)
  end forall

  call cpu_time(t1)
  do n=1,NMAX
     do m=1,NMAX
        a(n,m)=a(n,m)+b(n,m)*c
     end do
  end do
  call cpu_time(t2)
  print *,sum(a),t2-t1

  !--------------------------------

end program unroll_outer

progs> gfortran unroll_outer.f90
progs> a.out
   1219500000.00000       0.192970000000000
   1219500000.00000       0.298955000000000

- Loop nest optimization will also be dealt with when talking about optimization of memory access.

 Tools for High Performance Computing 2011:   4. Optimization of applications                                                                                                                                               24

Optimization of applications
- Note that sometimes optimization of arithmetics may produce different results compared with the unoptimzed code.

- Because of the finite precision of floating point numbers arithmetics operations are not always associative: 
(x+y)+z may be different from x+(y+z)

- Many compilers can do optimizations that can produce different results. Usually there are warnings in the compiler 
documentation for the use of these options.

- As an example of a loop unrolling in a reduction operator where the effect of a finite precision might be seen:
program unroll_dotprod
  use sizes
  implicit none
  integer,parameter :: NMAX=10000000,K=10,rr=rk
  real(rr) :: a(NMAX),b(NMAX),c=11.0
  integer ::  n,m
  real(rr) :: t1,t2,s,s0,s1,s2,s3

  forall (n=1:NMAX)
     a(n)=mod(n+1,K)/(10000.0*real(n,rr))
     b(n)=mod(n,K+10)
  end forall

  call cpu_time(t1)
  s=dot_product(a,b)
  call cpu_time(t2)
  print *,s,t2-t1

  call cpu_time(t1)
  s0=0.0; s1=0.0;s2=0.0;s3=0.0
  do n=1,NMAX,4
     s0=s0+a(n  )*b(n  )
     s1=s1+a(n+1)*b(n+1)
     s2=s2+a(n+2)*b(n+2)
     s3=s3+a(n+3)*b(n+3)
  end do
  s=s0+s1+s2+s3
  call cpu_time(t2)
  print *,s,t2-t1

  s=0.0
  call cpu_time(t1)
  do n=1,NMAX
     s=s+a(n)*b(n)
  end do
  call cpu_time(t2)
  print *,s,t2-t1
end program unroll_dotprod

progs> ifort unroll_dotprod.f90; a.out
  6.918235090048858E-002  0.100984000000000
  6.918235090048259E-002  0.106984000000000
  6.918235090048858E-002  0.103984000000000
progs> ifort -O0 unroll_dotprod.f90; a.out
  6.918235090048858E-002  0.137979000000000
  6.918235090048259E-002  0.104984000000000
  6.918235090048858E-002  0.138979000000000

progs> gfortran -O0 unroll_dotprod.f90 ; a.out
  6.3805178E-02  9.3984991E-02
  6.8390638E-02  3.9994001E-02
  6.3805178E-02  9.2985988E-02
progs> gfortran -O2 unroll_dotprod.f90 ; a.out
  6.9182351E-02  2.4996012E-02
  6.9182351E-02  2.2996008E-02
  6.9182351E-02  2.4995983E-02

Intel Fortran GNU Fortran
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Optimization of applications
- Procedure inlining

- Write the procedure statements instead of the subroutine of function call.
- Can be used in loop unrolling when the procedure is short. Example:

do n=1,nmax
a(i)=func(b(i),c)

end do 

real function func(b,c)
real :: b,c
func=sin(b)*c
return

end function func

do n=1,nmax
a(i)=sin(b(i))*c

end do 

- Most compilers can do inlining if asked to. 

- Common expression elimination
- There are cases where the compiler can not do this beacuse of procedure calls:

x=a*myfunc(b)+c
y=myfunc(b)**2+b
z=myfunc(b)+e

tmp=myfunc(b)
x=a*tmp+c
y=tmp**2+b
z=tmp+e

- Why can’t compiler do this optimization? 
- If it does not know whether myfunc has any side-effects or not it wants to be on the safe side and does the optimization 

assuming that there are side-effects.
- Use the interprocedural optimization feature some compilers have or write the procedure to the same file as the calling pro-

gram if you want the compiler to inline your own function.
- Note also the Fortran 95 specifier pure. With it you can tell the compiler that your procedure has no side-effects.
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Optimization of applications
- Loop invariant code motion

- Sometimes the compiler can’t do this either.

program codemotion
  use sizes
  implicit none
  integer :: i,j
  integer,parameter :: NMAX=10000000
  real(rk) :: a(NMAX),b(NMAX),x,y,t1,t2
  real(rk),external :: func

  read(5,*) x,y

  call cpu_time(t1)
  do i=1,NMAX
     a(i)=func(i)
     b(i)=a(i)/sqrt(x**2+y**2)
  end do
  call cpu_time(t2)

  print *,t2-t1,sum(a),sum(b)

end program codemotion

program codemotion1
  use sizes
  implicit none
  integer :: i,j
  integer,parameter :: NMAX=10000000
  real(rk) :: a(NMAX),b(NMAX),x,y,z,t1,t2
  real(rk),external :: func

  read(5,*) x,y
  z=1.0/sqrt(x**2+y**2)

  call cpu_time(t1)
  do i=1,NMAX
     a(i)=func(i)
     b(i)=a(i)*z
  end do
  call cpu_time(t2)

  print *,t2-t1,sum(a),sum(b)

end program codemotion1

progs> ifort -o codemotion codemotion.f90 inline_func.o
progs> ifort -o codemotion1 codemotion1.f90 inline_func.o
progs> ./codemotion
1,2
   1.82372300000000        2076445.65499713        928614.727234675
progs> ./codemotion1
1,2
   1.66174800000000        2076445.65499713        928614.727234675

By investigating the assembler list-
ing one can assure that the compiler 
doesn’t move the sqrt expression 
outside the loop. (See next page.)

It is the call of function func that 
prevents the optimization.



 Tools for High Performance Computing 2011:   4. Optimization of applications                                                                                                                                               27

Optimization of applications

- Assembler listing of the loop of the program codemotion1:
;;; 
;;;   do i=1,NMAX

        movl      $1, 80(%esp)                       
        .align    4,0x90
                                # LOE ebx esi edi
..B1.5:                         # Preds ..B1.6 ..B1.4

;;;      a(i)=func(i) !real(i,rk)/real(NMAX,rk)

        lea       80(%esp), %eax                     
        pushl     %eax                               
        call      func_                              
                                # LOE ebx esi edi f1
..B1.17:                        # Preds ..B1.5
        popl      %ecx                               
                                # LOE ebx esi edi f3
..B1.6:                         # Preds ..B1.17
        movl      80(%esp), %eax                     

;;;      b(i)=a(i)/sqrt(x**2+y**2)

        fldl      40(%esp)                           
        fldl      56(%esp)                           
        fxch      %st(1)                             
        fmul      %st(0), %st                        
        fxch      %st(1)                             
        fmul      %st(0), %st                        
        fxch      %st(2)                             
        fstl      -8+codemotion_$A(,%eax,8)          
        fxch      %st(2)                             
        faddp     %st, %st(1)                        
        fsqrt                                        
        fdivrp    %st, %st(1)                        
        fstpl     -8+codemotion_$B(,%eax,8)          

;;;   end do

        addl      $1, %eax                           
        movl      %eax, 80(%esp)                     
        cmpl      $1000000, %eax                     
        jle       ..B1.5        # Prob 99%           
                                # LOE ebx esi edi
..B1.7:                         # Preds ..B1.6

1. Don’t be frightened. There’s no need to understand all of this.
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Optimization of applications
- As we have seen the pattern of the application’s memory access has a large effect on its performance.

- Cache and TLB1 misses should be minimized.
- Arrays should be accessed in the order they are stored in the memory.

- For multidimensional arrays in F90 this means that the innermost do loop should be the one that runs over the left-
most index of the array.

- In C it should be the rightmost index. 

do j=1,n
do i=1,n

a(i,j)=b(i,j)+c(i,j)*d
end do

end do

for (i=0;i<n;i++)
for (j=0;j<n;j++)

a[i][j]=b[i][j]+c[i][j]*d;

- In this way the memory is accessed with unit stride. 

- By a simple loop interchange the n stride can be changed to unit stride:

do i=1,n
do j=1,n

a(i,j)=b(i,j)+c(i,j)*d
end do

end do

do j=1,n
do i=1,n

a(i,j)=b(i,j)+c(i,j)*d
end do

end do

1. Translation Lookaside Buffer = cache of virtual to physical address translation
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Optimization of applications
- Optimization is not always this simple. For example:

do i=1,n
do j=1,n

a(j,i)=b(i,j)
end do

end do

do j=1,n
do i=1,n

a(j,i)=b(i,j)
end do

end do

- Some unrolling of both loops might help:

  call fillarrays()
  call cpu_time(t1)
  do i=1,N,2
     do j=1,N,2
        a(j  ,i  )=a(j  ,i  )+b(i  ,j  )
        a(j+1,i  )=a(j+1,i  )+b(i  ,j+1)
        a(j  ,i+1)=a(j  ,i+1)+b(i+1,j  )
        a(j+1,i+1)=a(j+1,i+1)+b(i+1,j+1)
     end do
  end do
  call cpu_time(t2)
  print *,t2-t1,maxval(a),maxloc(a),sum(a)

contains 
  subroutine fillarrays()
    forall (i=1:N,j=1:N)
       a(i,j)=mod(i+1,P)+mod(j+1,P)
       b(i,j)=mod(i,P+10)+mod(j,P-5)
    end forall
    return
  end subroutine fillarrays
end program memaccess_block

program memaccess_block
  use sizes
  implicit none
  integer,parameter :: N=3000,P=21
  real(rk) :: a(N,N),b(N,N)
  integer ::  i,j
  real(rk) :: t1,t2

  call fillarrays()
  call cpu_time(t1)
  do i=1,N
     do j=1,N
        a(j,i)=a(j,i)+b(i,j)
     end do
  end do
  call cpu_time(t2)
  print *,t2-t1,maxval(a),maxloc(a),sum(a)

progs> ifort memaccess_block.f90
progs> a.out
    0.53191900                 87.00     103     526      0.182231E+09
    0.28395600                 87.00     103     526      0.182231E+09
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Optimization of applications
- Access of arrays a and b can be depicted in a way that clearly shows the usage of cache lines:

a b
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82 3 4 5 6 7

cache line row
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end do

3

4

6

7

1

5

8

10

11

12

...

9

13

storage order

containing 2 
memory
locations

=



 Tools for High Performance Computing 2011:   4. Optimization of applications                                                                                                                                               31

Optimization of applications
- What we actually did when we unrolled both loops to depth 2 in the previous example can also be viewed as consum-

ing the arrays in small 2x2 rectangles:

b

  do i=1,N,2
     do j=1,N,2
        a(j  ,i  )=a(j  ,i  )+b(i  ,j  )
        a(j+1,i  )=a(j+1,i  )+b(i  ,j+1)
        a(j  ,i+1)=a(j  ,i+1)+b(i+1,j  )
        a(j+1,i+1)=a(j+1,i+1)+b(i+1,j+1)
     end do
  end do

a

Compare to this

ba

- This is called blocking.
- We can immediately see that the number cache misses is reduced compared to the case where both arrays are tra-

versed as one single block. 
- On the other hand there are more cache misses than in the case where both arrays are scanned with unit stride, i.e. in 

their storage order.
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Optimization of applications

- A more complicated pattern of the array access gives even larger performance boost1:

Example from page 26:

CPU times in seconds for 2048x2048 arrays 

Direct double loop    0.49392500
2x2 blocking          0.27895800
Blocking show above   0.12898100

.

.

.

.

.

.

.

.

.

. . .

. . .
a

1. Example from K. Dowd: High Performance Computing, O’Reilly & Associates, 1993, Chapter 11, code in the file memaccess_block.f90
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Optimization of applications
- Sometimes compiler can not do the optimization due to ambiguity in memory references.

- For example when doing computations with sparse matrices the indexing is indirect:

do i=1,n
a(k(i))=b(k(i))+c(k(i))

enddo

- Now the compiler can not tell whether different iterations are independent. 

- Other form of ambiguity is aliasing. 
- Aliasing may happen when dealing with pointers: It is possible that two pointers point to same target; they become 

aliases.
- This is a more serious problem in C because there arrays are always pointers1.

- Two variables can become aliases also by a subroutine call:

call sub(a,a)
.
.
.

subroutine sub(x,y)
.
.
.

1. Well, depending how you define e.g. 2D arrays the compiler might know more about the possible aliasing between them.
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Optimization of applications
- Data alignment 

- Processor load data from memory in 4-32 byte chunks.
- The address of a chunk is a multiple of it size.
- This means that if memory is allocated for a double precision variable in such a way that its bytes belong to two 8-byte 

chunks the processor has to access memory twice in order to load the variable.
- In this case data is misaligned. 

- In many cases the compiler does the alignment; if not by default there are always options which force the natural data 
alingnment. 

- For best performance, data should be aligned as follows1:

Size of data in bits Address should be a 
multiple of 

8 any

16 4

32 4

64 8

80 16

128 16

1. Intel® Fortran Compiler for Linux* Systems, User’s Guide, Volume II: Optimizing Applications



 Tools for High Performance Computing 2011:   4. Optimization of applications                                                                                                                                               35

Optimization of applications
- Example

program misaligned
  use sizes
  implicit none
  integer,parameter :: ik=selected_int_kind(1)
  integer,parameter :: NMAX=100000,ITER=10000
  character(len=80) :: argu
  real(rk) :: t1,t2
  integer :: i,n,c
  type rec
     real(rk) :: x
     integer(ik) :: i
     integer(ik) :: j
  end type rec
  type(rec) :: r(NMAX)

  print *,bit_size(r(1)%i)

  call getarg(1,argu); read(argu,*) c
  r%x=0.0
  do n=1,NMAX
     r(n)%x=0.0
     r(n)%i=c
     r(n)%j=2*c
  end do
  call cpu_time(t1)
  do i=1,ITER
     do n=1,NMAX
        r(n)%x=r(n)%x+r(n)%i+r(n)%j
     end do
  end do
  call cpu_time(t2)
  print *,t2-t1,r(c)%x

end program misaligned  

progs> gfortran -mno-align-double misaligned.f90 ; a.out 2
   17.1143990000000        60000.0000000000
progs> gfortran -malign-double misaligned.f90 ; a.out 2
   14.4118100000000        60000.0000000000

xji

xji

-mno-align-double

-malign-double
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Optimization of applications
- CPU time as a function of array size:


