Chapter 14

Threads and Concurrent
Programming

OBJECTIVES
After studying this chapter, you will

Understand the concept of a thread.

Know how to design and write multithreaded programs.

Be able to use the Thread class and the Runnable interface.
Understand the life cycle of a thread.

Know how to synchronize threads.

OUTLINE

14.1 Introduction

14.2 What Is a Thread?

14.3 From the Java Library: java.lang.Thread

144 Thread States and Life Cycle

14.5 Using Threads to Improve Interface Responsiveness

14.6 Case Study: Cooperating Threads
14.7 Case Study: The Game of Pong

Chapter Summary
Solutions to Self-Study Exercises

Exercises

655

Visualizing a thread

656 CHAPTER 14 e Threads and Concurrent Programming
14.1 Introduction

This chapter is about doing more than one thing at a time. Doing more
than one thing at once is commonplace in our everyday lives. For exam-
ple, let’s say your breakfast today consists of cereal, toast, and a cup of
java. You have to do three things at once to have breakfast: eat cereal, eat
toast, and drink coffee.

Actually, you do these things “at the same time” by alternating among
them: You take a spoonful of cereal, then a bite of toast, and then sip some
coffee. Then you have another bite of toast, or another spoonful of cereal,
more coffee, and so on, until breakfast is finished. If the phone rings while
you're having breakfast, you will probably answer it—and continue to
have breakfast, or at least to sip the coffee. This means you're doing even
more “at the same time.” Everyday life is full of examples where we do
more than one task at the same time.

The computer programs we have written so far have performed one
task at a time. But there are plenty of applications where a program needs
to do several things at once, or concurrently. For example, if you wrote
an Internet chat program, it would let several users take part in a dis-
cussion group. The program would have to read messages from several
users at the same time and broadcast them to the other participants in
the group. The reading and broadcasting tasks would have to take place
concurrently. In Java, concurrent programming is handled by threads, the
topic of this chapter.

14.2 What Is a Thread?

A thread (or a thread of execution or a thread of control) is a single sequence of
executable statements within a program. For Java applications, the flow of
control begins at the first statement in main() and continues sequentially
through the program statements. For Java applets, the flow of control
begins with the first statement in init() . Loops within a program cause
a certain block of statements to be repeated. If-else structures cause certain
statements to be selected and others to be skipped. Method calls cause the
flow of execution to jump to another part of the program, from which it
returns after the method’s statements are executed. Thus, within a single
thread, you can trace the sequential flow of execution from one statement
to the next.

One way to visualize a thread is to imagine that you could make a list
of the program’s statements as they are executed by the computer’s cen-
tral processing unit (CPU). Thus, for a particular execution of a program
with loops, method calls, and selection statements, you could list each
instruction that was executed, beginning at the first, and continuing until
the program stopped, as a single sequence of executed statements. That’s
a thread!

Now imagine that we break a program up into two or more indepen-
dent threads. Each thread will have its own sequence of instructions.
Within a single thread, the statements are executed one after the other, as
usual. However, by alternately executing the statements from one thread
and another, the computer can run several threads concurrently. Even

SECTION 14.2 o What Is a Thread? 657

though the CPU executes one instruction at at time, it can run multiple
threads concurrently by rapidly alternating among them. The main ad-
vantage of concurrency is that it allows the computer to do more than
one task at a time. For example, the CPU could alternate between down-
loading an image from the Internet and running a spreadsheet calcula-
tion. This is the same way you ate toast and cereal and drank coffee in
our earlier breakfast example. From our perspective, it might look as if
the computer had several CPUs working in parallel, but that’s just the
illusion created by an effectively scheduling threads.

PANZAS DANEOFN@ERNOIR VM Threads. The Java Virtual Machine
(JVM) is itself an example of a multithreaded program. JVM threads
perform tasks that are essential to the successful execution of Java
programs.

IAN\Z Q.G OVNCPNOBAE CGarbage Collector Thread. One of the

JVM threads, the garbage collector thread, automatically reclaims mem-
ory taken up by objects that are not used in your programs. This
happens at the same time that the JVM is interpreting your program.

14.2.1 Concurrent Execution of Threads

The technique of concurrently executing several tasks within a program is
known as multitasking. A task in this sense is a computer operation of
some sort, such as reading or saving a file, compiling a program, or dis-
playing an image on the screen. Multitasking requires the use of a separate
thread for each of the tasks. The methods available in the Java Thread
class make it possible (and quite simple) to implement multithreaded
programs.

Most computers, including personal computers, are sequential machines
that consist of a single CPU, which is capable of executing one machine in-
struction at a time. In contrast, parallel computers, used primarily for large
scale scientific and engineering applications, are made up of multiple
CPUs working in tandem.

Today’s personal computers, running at clock speeds over 1 gigahertz—
1 gigahertz equals 1 billion cycles per second—are capable of executing
millions of machine instructions per second. Despite its great speed,
however, a single CPU can process only one instruction at a time.

Each CPU uses a fetch-execute cycle to retrieve the next instruction
from memory and execute it. Since CPUs can execute only one instruc-
tion at a time, multithreaded programs are made possible by dividing
the CPU’s time and sharing it among the threads. The CPU’s schedule
is managed by a scheduling algorithm, which is an algorithm that sched-
ules threads for execution on the CPU. The choice of a scheduling algo-
rithm depends on the platform on which the program is running. Thus,
thread scheduling might be handled differently on Unix, Windows, and
Macintosh systems.

One common scheduling technique is known as time slicing, in which

Multitasking

CPUs are sequential

Figure 14.1: Each thread gets a
slice of the CPU’s time.

Time slicing

Priority scheduling

Thread

+ run()

1

NumberThread

+ NumberThread(in n :int)
+ run()

FIGURE 14.2 The NumberThread
class overrides the inherited run()
method.

658 CHAPTER 14 o Threads and Concurrent Programming

Thread 1

Thread 2

e—

Quantum

each thread alternatively gets a slice of the CPU’s time. For example, sup-
pose we have a program that consists of two threads. Using this tech-
nique, the system would give each thread a small quantum of CPU time—
say, one thousandth of a second (one millisecond)—to execute its instruc-
tions. When its quantum expires, the thread would be preempted and the
other thread would be given a chance to run. The algorithm would then
alternate in this round-robin fashion between one thread and the other
(Fig. 14.1). During each millisecond on a 300-megahertz CPU, a thread
can execute 300,000 machine instructions. One megahertz equals 1 mil-
lion cycles per second. Thus, within each second of real time, each thread
will receive 500 time slices and will be able to execute something like 150
million machine instructions.

Under priority scheduling, threads of higher priority are allowed to
run to completion before lower-priority threads are given a chance. An
example of a high-priority thread would be one that is processing key-
board input or any other kind of interactive input from the user. If such
tasks were given low priority, users would experience noticeable delays
in their interaction, which would be quite unacceptable.

The only way a high-priority thread can be preempted is if a thread
of still higher priority becomes available to run. In many cases, higher-
priority threads are those that can complete their task within a few mil-
liseconds, so they can be allowed to run to completion without starving
the lower-priority threads. An example would be processing a user’s
keystroke, a task that can begin as soon as the key is struck and can be
completed very quickly. Starvation occurs when one thread is repeatedly
preempted by other threads.

PANAOTANCOPN@EROIBE Thread Support. Depending on the hard-
ware platform, Java threads can be supported by assigning different
threads to different processors, by time slicing a single processor, or by
time slicing many hardware processors.

14.2.2 Multithreaded Numbers

Let’s consider a simple example of a threaded program. Suppose we give
every individual thread a unique ID number, and each time it runs, it
prints its ID ten times. For example, when the thread with ID 1 runs the
output produced would just be a sequence of ten 1’s: 1111111111.

As shown in Figure 14.2, the NumberThread class is defined as a sub-
class of Thread and overrides the run() method. To set the thread’s ID

SECTION 14.2 o What Is a Thread? 659

/threadl:NumberThread‘ Figure 14.3: The Numbers ob-

?;\Q): ject creates several instances of

%&Oe‘b‘e NumberThread and tells each
start()—» one to start()

: Numbers Creates —{ thread? : NumberThread‘
«S’[Q
G..
’ea;e&O\A

thread3 : NumberThread‘

number, the constructor takes a single parameter that is used to set the
thread’s ID number. In the run() method, the thread simply executes a
loop that prints its own number ten times:

public class NumberThread extends Thread {
int num;

public NumberThread(int n) {
num = n;

public void run() {
for (int k=0; k < 10; k++) {
System.out. print (num);
} //for
} // run ()
} // NumberThread

Thread subclass
Now let’s define another class whose task will be to create many

NumberThread s and get them all running at the same time (Fig. 14.3). For

each NumberThread , we want to call its constructor and then start()

it:

public class Numbers {
public static void main(String args[]) {
// 5 threads
NumberThread numberl, number2, number3, number4d, number5;

// Create and start each thread

numberl = new NumberThread (1); numberl.start ();
number2 = new NumberThread (2); number2. start ();
number3 = new NumberThread (3); number3. start ();
number4 = new NumberThread (4); number4.start ();
number5 = new NumberThread (5); number5. start ();

} // main ()

} // Numbers

When a thread is started by calling its start() method, it automati-
cally calls its run() method. The output generated by this version of Starting a thread

«interface»
Runnable

+ run()

A

Thread

+ Thread()

+ Thread(in name : String)
+ getName() : String

+ getPriority() : int

+ run()

+ setName(in s : String)

+ setPriority(in priority : int)
+ start()

+ stop()

+ Thread(in target : Runnable)

FIGURE 144 The

java.lang.Thread class. NOTE:

NEEDS REVISION TO ADD

PRIORITY, YIELD() and SLEED().

e

660 CHAPTER 14 o Threads and Concurrent Programming

the Numbers application is as follows:

[l 1111111112222222222333333333344444444445555555555

From this output, it appears that the individual threads were run in the
order in which they were created. In this case, each thread was able to run
to completion before the next thread started running.

What if we increase the number of iterations that each thread per-
forms? Will each thread still run to completion? The following output
was generated for 200 iterations per thread:

111
111
112222222
222
222
223333333333333333333333333
333
33333333333333333333333333344
Q4444444400000 AAAAAAAAAAAALAAAAAALAAAAAAAAAAAAAAAAAAAA4A4AAALAALAAAAAAAAL
4444444444555
552222222
2222333
333333333333334444444444444444444444444444445555555555555555555555555
55444444444444444
4444444444444444444444444444444444

In this case, only thread 1 managed to run to completion. Threads 2, 3,
4, and 5 did not. As this example illustrates, the order and timing of a
thread’s execution are highly unpredictable. This example also serves to
illustrate one way of creating a multithreaded program:

e Create a subclass of the Thread class.

e Within the subclass, implement a method with the signature void
run() that contains the statements to be executed by that thread.

e Create several instances of the subclass and start each thread by invok-
ing the start() method on each instance.

VA7 VN[COFNCZRNOIN Thread Creation. One way to create a
thread in Java is to define a subclass of Thread and override the default
run() method.

14.3 From the Java Library: java.lang.Thread

The java.lang.Thread class contains the public methods shown in Fig-
ure 14.4 (the figure contains only a partial list). Note that Thread im-
plements the Runnable interface, which consists simply of the run()
method. As we will now see, another way to create a thread is to instan-
tiate a Thread object and pass it a Runnable object that will become its
body. This approach allows you to turn an existing class into a separate
thread.

A Runnable object is any object that implements the Runnable
interface—that is, any object that implements the run() method

SECTION 14.3 o From the Java Library: java.lang.Thread 661

(Fig. 14.5). The following example provides an alternative way to imple-
ment the NumberThread program:

public class NumberPrinter implements Runnable {
int num;

public NumberPrinter(int n) {
num = n;
}

public void run() {
for (int k=0; k < 10; k++)
System .out. print (num);
} // run ()
} // NumberPrinter

Given this definition, we would then pass instances of this class to the
individual threads as we create them:

«interface»
Runnable

+ run()

A

NumberPrinter

— num : int

+ NumberPrinter(in n : int)
+ run()

FIGURE 14.5 Any object that
implements the Runnable interface
can be run as a separate thread.

public class Numbers {
public static void main(String args[]) {

Thread numberl, number2, number3, number4d, number5;

// Create and start each thread

} // main ()
} // Numbers

numberl = new Thread (new NumberPrinter (1)); numberl. start ();
number2 = new Thread (new NumberPrinter (2)); number2. start ();
number3 = new Thread (new NumberPrinter (3)); number3. start ();
number4 = new Thread (new NumberPrinter (4)); number4. start ();
number5 = new Thread (new NumberPrinter (5)); number5. start ();

The NumberPrinter class implements Runnable by defining exactly
the same run() that was used previously in the NumberThread class.
We then pass instances of NumberPrinter ~ when we create the individ-
ual threads. Doing things this way gives exactly the same output as earlier.
This example serves to illustrate another way of creating a multithreaded
program:

e Implement the Runnable interface for an existing class by implement-
ing the void run() method, which contains the statements to be exe-
cuted by that thread.

e Create several Thread instances by first creating instances of the
Runnable class and passing each instance as an argument to the
Thread() constructor.

e For each thread instance, start it by invoking the start() =~ method on
it.

NS NN (@ OFN@ERNOIREN Thread Creation. A thread can be created
by passing a Runnable object to a new Thread instance. The object’s
run() method will be invoked automatically as soon as the thread’s
start() method is called.

Controlling threads

662 CHAPTER 14 o Threads and Concurrent Programming

NN PPIENI(@N] Converting a Class to a Thread. Using
the Runnable interface to create threads enables you to turn an
existing class into a thread. For most applications, using the
Runnable interface is preferable to redefining the class as a Thread
subclass.

SELF-STUDY EXERCISE

EXERCISE 14.1 Use the Runnable interface to convert the following
class into a thread. You want the thread to print all the odd numbers up
to its bound:

public class PrintOdds {
private int bound;
public PrintOdds(int b) {
bound = b;
}

public void print() {
if (int k = 1, k < bound; k+=2)
System.out. println (k);

}

} // PrintOodds

14.3.1 Thread Control

The various methods in the Thread class (Fig. 14.4) can be used to ex-
ert some control over a thread’s execution. The start() and stop()
methods play the obvious roles of starting and stopping a thread. These
methods will sometimes be called automatically. For example, an applet
is treated as a thread by the browser, or appletviewer, which is responsible
for starting and stopping it.

As we saw in the NumberThread example, the run() method encap-
sulates the thread’s basic algorithm. It is usually not called directly. In-
stead, it is called by the thread’s start() method, which handles any
system-dependent initialization tasks before calling run()

14.3.2 Thread Priority

The setPriority(int) method lets you set a thread’s priority to an in-
teger value between Thread.MIN _PRIORITY and Thread.MAX _PRIOR-
ITY, the bounds defined as constants in the Thread class. Using set-

Priority() gives you some control over a thread’s execution. In gen-

SECTION 14.3 o From the Java Library: java.lang.Thread 663

eral, higher-priority threads get to run before, and longer than, lower-
priority threads.

PALOESNEONEIN0IRE Preemption. A higher-priority thread
that wants to run will preempt any threads of lower priority.

To see how setPriority() works, suppose we change NumberThread ’s
constructor to the following:

public NumberThread(int n) {
num = n;
setPriority(n);

}

In this case, each thread sets its priority to its ID number. So, thread five
will have priority five, a higher priority than all the other threads. Sup-
pose we now run 2 million iterations of each of these threads. Because 2
million iterations will take a long time if we print the thread’s ID on each
iteration, let’s modify the run() method, so that the ID is printed every 1
million iterations:

for (int k = 0; k < 10; k++)
if (k % 1000000 == 0)
System.out. print (num);

Given this modification, we get the following output when we run
Numbers:

[5544332211 J

It appears from this output that the threads ran to completion in priority
order. Thus, thread five completed 2 million iterations before thread four
started to run, and so on. This shows that, on my system at least, the Java
Virtual Machine (JVM) supports priority scheduling.

NN INCERVNVIYIN[@YNIE Platform Dependence. Thread

implementation in Java is platform dependent. Adequate testing is
necessary to ensure that a program will perform correctly on a given
platform.

JTANZN UGN PBIERI(@N] Thread Coordination. One way to

coordinate the behavior of two threads is to give one thread higher
priority than another.

AN CIE[@INENRIE] Starvation. A high-priority thread that
never gives up the CPU can starve lower-priority threads by
preventing them from accessing the CPU.

Thread priority

Sleep versus yield

664 CHAPTER 14 o Threads and Concurrent Programming

14.3.3 Forcing Threads to Sleep

The Thread.sleep() and Thread.yield() methods also provide
some control over a thread’s behavior. When executed by a thread, the
yield() method causes the thread to yield the CPU, allowing the thread
scheduler to choose another thread. The sleep() method causes the
thread to yield and not to be scheduled until a certain amount of real time
has passed.

IEANZQ W[OYNEZPNOBE Sleep Versus Yield. Both the yield()
and sleep() methods yield the CPU, but the sleep() method keeps
the thread from being rescheduled for a fixed amount of real time.

Thesleep() method can halt a running thread for a given number of mil-
liseconds, allowing other waiting threads to run. The sleep() method
throws an InterruptedException , which is a checked exception. This
means that the sleep() call must be embedded within a try/catch
block or the method it’s in must throw an InterruptedException
Try/catch blocks were covered in Chapter 10.

\ sleep (100); \
' } catch (InterruptedException e) { \
\ System.out. println (e. getMessage ()); \
o |

For example, consider the following version of the NumberPrinter.run()

public void run() {
for (int k=0; k < 10; k++) {
try {
Thread . sleep ((long)(Math.random() * 1000));
} catch (InterruptedException e) {
System.out. println (e. getMessage ());
}

System.out. print (num);
} 7/ for
} // run()

In this example, each thread is forced to sleep for a random number of
milliseconds between 0 and 1,000. When a thread sleeps, it gives up the
CPU, which allows one of the other waiting threads to run. As you would
expect, the output we get from this example will reflect the randomness
in the amount of time that each thread sleeps:

-
L14522314532143154232152423541243235415523113435451 J

As we will see, the sleep() method provides a rudimentary form of
thread synchronization, in which one thread yields control to another.

SECTION 14.3 o From the Java Library: java.lang.Thread 665

SELF-STUDY EXERCISES

EXERCISE 14.2 What happens if you run five NumberThread s of
equal priority through 2 million iterations each? Run this experiment and
note the output. Don’t print after every iteration! What sort of scheduling
algorithm (round-robin, priority scheduling, or something else) was used
to schedule threads of equal priority on your system?

EXERCISE 143 Try the following experiment and note the output. Let
each thread sleep for 50 milliseconds (rather than a random number of
milliseconds). How does this affect the scheduling of the threads? To
make things easier to see, print each thread’s ID after every 100,000 itera-
tions.

EXERCISE 14.4 The purpose of the Java garbage collector is to recap-
ture memory that was used by objects that are no longer being used by
your program. Should its thread have higher or lower priority than your
program?

14.3.4 The Asynchronous Nature of Threaded Programs

Threads are asynchronous. This means that the order of execution and
the timing of a set of threads are unpredictable, at least from the pro-
grammer’s point of view. Threads are executed under the control of the
scheduling algorithm used by the operating system and the Java Virtual
Machine. In general, unless threads are explicitly synchronized, it is im-
possible for the programmer to predict when and for how long an indi-
vidual thread will run. In some systems, under some circumstances, a
thread might run to completion before any other thread can run. In other
systems, or under different circumstances, a thread might run for a short
time and then be suspended while another thread runs. Of course, when
a thread is preempted by the system, its state is saved so that its execution
can be resumed without losing any information.

One implication of a thread’s asynchronicity is that it is not generally
possible to determine where in its source code an individual thread might
be preempted. You can’t even assume that a thread will be able to com-
plete a simple Java arithmetic operation once it has started it. For example,
suppose a thread had to execute the following operation:

N
LintN=5+3; J

This operation computes the sum of 5 and 3 and assigns the result to N. It
would be tempting to think that once the thread started this operation, it
would be able to complete it, but that is not necessarily so. You have to
remember that Java code is compiled into a rudimentary bytecode, which
is translated still further into the computer’s machine language. In ma-
chine language, this operation would break down into something like the
following three steps:

‘ Fetch 5 from memory and store it in register A. \
| Add 3 to register A. \
| Assign the value in register A to N. |

Thread preemptions are unpredictable

An arithmetic operation can be
interrupted

Threads are asynchronous

Ready, running, and sleeping

Controlling a thread

Figure 14.6: A depiction of a
thread’s life cycle.

666 CHAPTER 14 o Threads and Concurrent Programming

Although none of the individual machine instructions can be preempted,
the thread could be interrupted between any two machine instructions.
The point here is that not even a single Java language instruction can be
assumed to be indivisible or unpreemptible. Therefore, it is impossible to
make any assumptions about when a particular thread will run and when
it will give up the CPU. This suggests the following important principle
of multithreaded programs:

JTNZQ NG VNEPNEBE Asynchronous Thread Principle. Unless
they are explicitly prioritized or synchronized, threads behave in a
completely asynchronous fashion.

JPANZNINCERVNVIVINN[@YUIE Thread Timing. Unless they are
explicitly synchronized, you cannot make any assumptions about
when, or in what order, individual threads will execute, or where a
thread might be interrupted or preempted during its execution.

As we will see, this principle plays a large role in the design of multi-
threaded programs.

14.4 Thread States and Life Cycle

Each thread has a life cycle that consists of several different states, which
are summarized in Figure 14.6 and Table 14.1. Thread states are rep-
resented by labeled ovals, and the transitions between states are repre-
sented by labeled arrows. Much of a thread’s life cycle is under the
control of the operating system and the Java Virtual Machine. Those
transitions represented by method names—such as start() , stop() ,
wait() , sleep() , notify() = —can be controlled by the program. Of
these methods, the stop() method has been deprecated in JDK 1.2 be-
cause it is inherently unsafe to stop a thread in the middle of its execution.
Other transitions—such as dispatch, I/O request, 1/O done, time expired, done
sleeping—are under the control of the CPU scheduler. When first created
a thread is in the ready state, which means that it is ready to run. In the

l start()
notify()
notifyAll()

Time
Expires

Done
sleeping

Sleeping

Dispatch
sleep()

1/O requested

Blocked

wait()

SECTION 14.4 o Thread States and Life Cycle 667

TABLE 14.1 A summary of the different thread states.

State Description

Ready The thread is ready to run and waiting for the CPU.
Running The thread is executing on the CPU.

Waiting The thread is waiting for some event to happen.
Sleeping The thread has been told to sleep for a time.
Blocked The thread is waiting for I/O to finish.

Dead The thread is terminated.

ready state, a thread is waiting, perhaps with other threads, in the ready
queue, for its turn on the CPU. A queue is like a waiting line. When
the CPU becomes available, the first thread in the ready queue will be
dispatched—that is, it will be given the CPU. It will then be in the running
state.

Transitions between the ready and running states happen under the
control of the CPU scheduler, a fundamental part of the Java runtime
system. The job of scheduling many threads in a fair and efficient manner
is a little like sharing a single bicycle among several children. Children
who are ready to ride the bike wait in line for their turn. The grown up
(scheduler) lets the first child (thread) ride for a period of time before the
bike is taken away and given to the next child in line. In round-robin
scheduling, each child (thread) gets an equal amount of time on the bike
(CPU).

When a thread calls the sleep() method, it voluntarily gives up the
CPU, and when the sleep period is over, it goes back into the ready queue.
This would be like one of the children deciding to rest for a moment dur-
ing his or her turn. When the rest was over, the child would get back in
line.

When a thread calls the wait() method, it voluntarily gives up the
CPU, but this time it won’t be ready to run again until it is notified by
some other thread.

This would be like one child giving his or her turn to another child.
When the second child’s turn is up, it would notify the first child, who
would then get back in line.

The system also manages transitions between the blocked and ready
states. A thread is put into a blocked state when it does some kind of I/O
operation. I/O devices, such as disk drives, modems, and keyboards, are
very slow compared to the CPU. Therefore, I/O operations are handled
by separate processors known as controllers. For example, when a thread
wants to read data from a disk drive, the system will give this task to the
disk controller, telling it where to place the data. Because the thread can’t
do anything until the data are read, it is blocked, and another thread is
allowed to run. When the disk controller completes the I/O operation,
the blocked thread is unblocked and placed back in the ready queue.

In terms of the bicycle analogy, blocking a thread would be like giving
the bicycle to another child when the rider has to stop to tie his or her
shoe. Instead of letting the bicycle just sit there, we let another child ride
it. When the shoe is tied, the child is ready to ride again and goes back

The ready queue

CPU scheduler

Threads can give up the CPU

Threads block on I/O operations

RandomDotApplet.class

| Draw || Clear |

Drawing Canvas

oo b AR ©

Applet started

FIGURE 14.7 Random dots are
drawn until the user clicks the Clear
button.

Problem specification

668 CHAPTER 14 e Threads and Concurrent Programming

into the ready line. Letting other threads run while one thread is waiting
for an I/O operation to complete improves the overall utilization of the
CPU.

SELF-STUDY EXERCISE

EXERCISE 14.5 Round-robin scheduling isn’t always the best idea.
Sometimes priority scheduling leads to a better system. Can you think
of ways that priority scheduling—higher-priority threads go to the head
of the line—can be used to improve the responsiveness of an interactive
program?

14.5 Using Threads to Improve
Interface Responsiveness

One good use for a multithreaded program is to help make a more respon-
sive user interface. In a single-threaded program, a program that is ex-
ecuting statements in a long (perhaps even infinite) loop remains unre-
sponsive to the user’s actions until the loop is exited. Thus, the user will
experience a noticeable and sometimes frustrating delay between the time
an action is initiated and the time it is actually handled by the program.

14.5.1 Single-Threaded Design

It’s always a good idea that the interface be responsive to user input, but
sometimes it is crucial to an application. For example, suppose a psy-
chology experiment is trying to measure how quickly a user responds to
a certain stimulus presented by a program. Obviously, for this kind of
application, the program should take action as soon as the user clicks a
button to indicate a response to the stimulus. Let’s work through an ap-
propriate program design for the experiment. First, we will formally state
the situation and describe what the program should do. Then, we will
examine the components that would make up an effective program.

Problem Statement

A psychologist is conducting a psychometric experiment to measure user
response to a visual cue and asks you to create the following program.
The program should have two buttons. When the Draw button is clicked,
the program begins drawing thousands of black dots at random locations
within a rectangular region of the screen (Fig. 14.7). After a random time
interval, the program begins drawing red dots. This change corresponds
to the presentation of the stimulus. As soon as the stimulus is presented
the user is supposed to click on a Clear button, which clears the drawing
area. To provide a measure of the user’s reaction time, the program should
report how many red dots were drawn before the user clicked the Clear
button.

SECTION 13.4 e Using Threads to Improve Interface Responsiveness669

JFrame JButtons
| \ Controls Component Hierarchy
Y y4 \v % JPanel JFrame
(Draw) (Clear > Controls JPanel
-~
BorderLayout Draw JButton
Drawing north Clear JButton
JPanel Drawing JPanel

-+ BorderLayout
center

Figure 14.8 shows a design for this program’s GUL It contains a con-
trol JPanel that contains the two JButton s. The dots are drawn on a
JPanel , which is positioned in the center of a BorderLayout design.

Problem Decomposition

This program should be decomposed into two classes, a GUI to handle
the user interface and a drawing class to manage the drawing. The main
features of its classes are as follows:

e RandomDotGUI Class: This class manages the user interface, respond-
ing to user actions by calling methods of the Dotty class (Fig. 14.9).

e Dotty Class: This class contains draw() and clear() methods for
drawing on the GUI’s drawing panel (Fig. 14.10).

The RandomDotGUI Class

The implementation of RandomDotGUI is shown in Figure 14.11. The GUI
arranges the control and drawing panels in a BorderLayout and listens
for action events on its JButton s. When the user clicks the Draw but-
ton, the GUI’s actionPerformed() method will create a new Dotty
instance and call its draw() method:

‘ dotty = new Dotty (canvas, NDOIS);
‘ dotty .draw ();

Note that Dotty is passed a reference to the drawing canvas as well as
the number of dots to be drawn. When the user clicks the Clear button, the
GUI should call the dotty.clear() method. Of course, the important
question is, how responsive will the GUI be to the user’s action?

The Dotty Class

The purpose of the Dotty class will be to draw the dots and to report
how many red dots were drawn before the canvas was cleared. Because
it will be passed a reference to the drawing panel and the number of dots
to draw, the Dotty class will need instance variables to store these two
values. It will also need a variable to keep track of how many dots were
drawn. Finally, since it will be drawing within a fixed rectangle on the

Figure 14.8: GUI design for the
dot-drawing program.

GUI design

Interface class and drawing class

RandomDotGUI

+ NDOTS :int = 10000

— dotty : Dotty

— controls : JPanel

— canvas : JPanel

— draw : JButton

— clear : JButton

+ init()

+ actionPerformed(in e : ActionEvent)

FIGURE 14.9 The RandomDotGUI.

Dotty

+ HREEF :int final = 20

+ VREF :int final = 20

+ LEN :int final = 200

— canvas : JPanel

— nDots :int

— nDrawn : int

— firstRed :int = 0

+ Dotty(in canv : JPanel, in n : int)
+ draw()

+ clear()

FIGURE 14.10 The Dotty class
manages the drawing actions.

670 CHAPTER 14 o Threads and Concurrent Programming

import java.awt.x;
import javax.swing.x*;
import java.awt.event.x;

public class RandomDotGUI extends JFrame
implements ActionListener {
public final int NDOIS = 10000;
private DOtty dOtty,’ // The drawing class
private JPanel controls = new JPanel();
private JPanel canvas = new JPanel();
private JButton draw = new JButton ("Draw”);
private JButton clear = new JButton(”Clear”);

public RandomDotGUI() {
getContentPane ().setLayout(new BorderLayout());
draw.addActionListener (this);
clear.addActionListener (this);
controls.add(draw);
controls.add(clear);
canvas.setBorder (
BorderFactory.createTitledBorder (”Drawing Canvas”));
getContentPane ().add(”North”, controls);
getContentPane ().add(”Center”, canvas);
getContentPane (). setSize (400, 400);
}
public void actionPerformed (ActionEvent e) {
if (e.getSource() == draw) {
dotty = new Dotty (canvas, NDOIS);
dotty .draw ();
} else {
dotty . clear ();
}

} // actionPerformed ()

public static void main(String args[]){
RandomDotGUI gui = new RandomDotGUI();
gui.setSize (400,400);
gui.setVisible (true);

}

} // RandomDotGUI

Figure 14.11: The RandomDotGUI class.

panel, the reference coordinates and dimensions of the drawing area are
declared as class constants.

The Dotty() constructor method will be passed a reference to a draw-
ing panel as well as the number of dots to be drawn and will merely assign
these parameters to its instance variables. In addition to its constructor
method, the Dotty class will have public draw() and clear() meth-
ods, which will be called from the GUI. The draw() method will use a
loop to draw random dots. The clear() will clear the canvas and report
the number of dots drawn.

SECTION 13.4 e Using Threads to Improve Interface Responsiveness671

import java.awt.x;
import javax.swing.x; // Import Swing classes

public class Dotty {
// Coordinates
private static final int HREF = 20, VREF = 20, LEN = 200;
private JPanel canvas;

private int nDots; // Number of dots to draw
private int nDrawn; // Number of dots drawn
private int firstRed = 0; // Number of the first red dot

public Dotty (JPanel canv, int dots) {
canvas = canv;
nDots = dots;

public void draw () {
Graphics g = canvas.getGraphics ();
for (nDrawn = 0; nDrawn < nDots; nDrawn++) {
int x = HREF + (int)(Math.random() =* LEN);
int y = VREF + (int)(Math.random() * LEN);
g.fillOval(x, & 3, 3), // Draw a dot

if ((Math.random() < 0.001) && (firstRed == 0)) {
g.setColor(Color.red); // Change color to red
firstRed = nDrawn;
}
} // for
} // draw ()
public void clear () { // Clear screen and report result
Graphics g = canvas. getGraphics ();
g.setColor (canvas. getBackground ());
g.fillRect (HREF, VREF, LEN + 3, LEN + 3);
System.out. println (

"Number of dots drawn since first red = ” + (nDrawn—firstRed));
Y /7 clear ()
} // Dotty

Figure 14.12: The Dotty class, single-threaded version.

The complete implementation of Dotty is shown in Figure 14.12. Note
how its draw() method is designed. The drawing loop is bounded by
the number of dots to be drawn. On each iteration, the draw() method
picks a random location within the rectangle defined by the coordinates
(HREE VREF) and (HREF+LEN, VREF+LEN), and draws a dot there. On
each iteration it also generates a random number. If the random number
is less than 0.001, it changes the drawing color to red and keeps track of
the number of dots drawn up to that point.

The problem with this design is that as long as the draw() method
is executing, the program will be unable to respond to the GUI’s Clear
button. In a single-threaded design, both the GUI and dotty are com-
bined into a single thread of execution (Fig. 14.13). When the user clicks
the Draw button, the GUI’s actionPerformed() method is invoked.

Figure 14.13: A single-threaded
execution of random dot drawing.

«interface»
Runnable

+ run()

A

Dotty

+ run()

FIGURE 14.14 In a multithreaded
design, the Dotty class implements
Runnable .

Multithreaded design: Interrupt the
drawing loop

672 CHAPTER 14 o Threads and Concurrent Programming

Draw button Clear button 10,000 dots

dotty.clear()

applet.init() dotty.draw() actionPerformed()

It then invokes Dotty ’s draw() method, which must run to completion
before anything else can be done. If the user clicks the Clear button while
the dots are being drawn, the GUI won’t be able to get to this until all the
dots are drawn.

If you run this program with nDots set to 10,000, the program will not
clear the drawing panel until all 10,000 dots are drawn, no matter when
the Clear button is pressed. Therefore, the values reported for the user’s
reaction time will be wrong. Obviously, since it is so unresponsive to user
input, this design completely fails to satisfy the program’s specifications.

JENZQ WG UN€PNUBE Single-Threaded Loop. Ina
single-threaded design, a loop that requires lots of iterations will
completely dominate the CPU during its execution, which forces other
tasks, including user I/O tasks, to wait.

SELF-STUDY EXERCISE

EXERCISE 14.6 Suppose the Java Virtual Machine (JVM) was single
threaded and your program got stuck in an infinite loop. Would you be
able to break out of the loop by typing some special command (such as
Control-C) from the keyboard?

14.5.2 Multithreaded Drawing: The Dotty Thread

One way to remedy this problem is to create a second thread (in addition
to the GUI itself) to do the drawing. The drawing thread will be responsi-
ble just for drawing, while the GUI thread will be responsible for handling
user actions in the interface. The trick to making the user interface more
responsive will be to interrupt the drawing thread periodically so that the
GUI thread has a chance to handle any events that have occurred.

As Figure 14.14 illustrates, the easiest way to convert Dotty into a
thread is to have it implement the Runnable interface:

public class Dotty implements Runnable {
// Everything else remains the same

public void run() {
draw ();
}

SECTION 13.4 e Using Threads to Improve Interface Responsiveness673

This version of Dotty will perform the same task as before except that
it will now run as a separate thread of execution. Note that its run()
method just calls the draw() method that we defined in the previous ver-
sion. When the Dotty thread is started by the RandomDotGUI, we will
have a multithreaded program.

However, just because this program has two threads doesn’t necessarily
mean that it will be any more responsive to the user. There’s no guarantee
that the drawing thread will stop as soon as the Clear button is clicked. On
most systems, if both threads have equal priority, the GUI thread won't
run until the drawing thread finishes drawing all N dots.

LN SE[@N€NNiE] Thread Control. Just breaking a program
into two separate threads won’t necessarily give you the desired
performance. It might be necessary to coordinate the threads.

Therefore, we have to modify our design in order to guarantee that the
GUI thread will get a chance to handle the user’s actions. One good way
to do this is to have Dotty sleep for a short instance after it draws each
dot. When a thread sleeps, any other threads that are waiting their turn
will get a chance to run. If the GUI thread is waiting to handle the user’s
click on Clear, it will now be able to call Dotty ‘s clear() method.

The new version of draw() is shown in Figure 14.15. In this version of
draw() , the thread sleeps for 1 millisecond on each iteration of the loop.
This will make it possible for the GUI to run on every iteration, so it will
handle user actions immediately.

Another necessary change is that once the clear() = method is called,
the Dotty thread should stop running (drawing). The correct way to stop
a thread is to use some variable whose value will cause the run loop (or
in this case the drawing loop) to exit, so the new version of Dotty uses
the boolean variable isCleared to control when drawing is stopped.
Note that the variable is initialized to false and then set to true in the
clear() method. The for loop in draw() will exit when isCleared
becomes true . This causes the draw() method to return, which causes
therun() method to return, which causes the thread to stop in an orderly
fashion.

JINZ NSNS (@N] Threaded GUIs. Designing a
multithreaded GUI involves creating a secondary thread that will run
concurrently with the main GUI thread. The GUI thread handles the
user interface, while the secondary thread performs CPU-intensive
calculations.

NN YNC@LVNIYINEPNIE Threading an GUI. Creating a second
thread within a GUI requires three steps: (1) Define the secondary
thread to implement the Runnable interface, (2) override its run()
method, and (3) incorporate some mechanism, such as a sleep()
state, into the thread’s run algorithm so that the GUI thread will have
a chance to run periodically.

Thread control

Using sleep()
drawing

to interrupt the

674 CHAPTER 14 o Threads and Concurrent Programming

import java.awt.x;
import javax.swing.x*; // Import Swing classes

public class Dotty implements Runnable {
// Coordinates
private static final int HREF = 20, VREF = 20, LEN = 200;
private JPanel canvas;

private int nDots; // Number of dots to draw
private int nDrawn; // Number of dots drawn
private int firstRed = O; // Number of the first red dot
private boolean isCleared = false; // Panel is cleared

public void run() {
draw ();

public Dotty (JPanel canv, int dots) {
canvas = canv;
nDots = dots;
}
public void draw () {
Graphics g = canvas.getGraphics ();
for (nDrawn = 0; !isCleared && nDrawn < nDots; nDrawn++) {
int x = HREF + (int)(Math.random () * LEN);
int y = VREF + (int)(Math.random() = LEN);
g.fillOval(x, y, 3, 3); // Draw a dot

if (Math.random() < 0.001 && firstRed == 0) {
g.setColor (Color.red); // Change color to red
firstRed = nDrawn;

}

try {
Thread .sleep (1); // Sleep for an instant

} catch (InterruptedException e) {
System.out. println (e. getMessage ());
}

} // for
Y /7 draw ()
public void clear () {
isCleared = true;
Graphics g = canvas.getGraphics ();
g.setColor(canvas.getBackground ());
g. fillRect (HREF, VREF,LEN+3 ,LEN+3);
System.out. println ("Number of dots drawn since first red =
+ (nDrawn—firstRed));

7

} // clear ()
} // Dotty

Figure 14.15: By implementing the Runnable interface, this version of

Dotty can run as a separate thread.

SECTION 13.4 e Using Threads to Improve Interface Responsiveness675
Modifications to RandomDotGUI

We don’t need to make many changes in RandomDotGUI to get it to
work with the new version of Dotty . The primary change comes in the
actionPerformed() method. Each time the Draw button was clicked
in the original version of this method, we created a dotty instance and
then called its draw() method. In the revised version we must create a
new Thread and pass it an instance of Dotty , which will then run as a
separate thread:

public void actionPerformed (ActionEvent e) {

if (e.getSource() == draw) {
dotty = new Dotty (canvas, NDOIS);
dottyThread = new Thread (dotty);
dottyThread . start ();

} else {
dotty.clear ();

}

} // actionPerformed ()

Note that in addition to a reference to dotty we also have a reference to a
Thread named dottyThread . This additional variable must be declared
within the GUI.

Remember that when you call the start() method, it automatically
calls the thread’s run() method. When dottyThread starts to run, it
will immediately call the draw() method and start drawing dots. After
each dot is drawn, dottyThread will sleep for an instant.

Notice how the GUI stops the drawing thread. In the new version,
Dotty.clear() will set the isCleared variable, which will cause the
drawing loop to terminate. Once again, this is the proper way to stop a
thread. Thus, as soon as the user clicks the Clear button, the Dotty thread
will stop drawing and report its result.

PaNZOp) i Sel@IN[€NNid] Stopping a Thread. The best way to stop a
thread is to use a boolean control variable whose value can be set to
true or false to exit the run() loop.

14.5.3 Advantages of Multithreaded Design

By creating a separate thread for Dotty , we have turned a single-threaded
program into a multithreaded program. One thread, the GUI, handles the
user interface. The second thread handles the drawing task. By forcing
the drawing to sleep on each iteration, we guarantee that the GUI thread
will remain responsive to the user’s actions. Figure 14.16 illustrates the
difference between the single- and multithreaded designs. Note that the
GUI thread starts and stops the drawing thread, and the GUI thread exe-
cutes dotty.clear() . The drawing thread simply executes its draw()
method. In the single-threaded version, all of these actions are done by
one thread.

Starting the drawing thread

Divide and conquer!

Figure 14.16: Two independent
threads: one for drawing, the
other for the GUL

Trade-off: speed vs. responsiveness

Producer and consumer threads

676 CHAPTER 14 o Threads and Concurrent Programming

Draw button Clear button
init() actionPerformed()
——————————————— Applet thread
L
Dotty thread
nnnnm oy e
draw() clear()

The trade-off involved in this design is that it will take longer to draw
N random dots, since dottyThread.draw() will sleep for an instant on
each iteration. However, the extra time is hardly noticeable. By breaking
the program into two separate threads of control, one to handle the draw-
ing task and one to handle the user interface, the result is a much more
responsive program.

IENZNE S GIUAYERPIENI[@N] Responsive Interfaces. In order to give a
program a more responsive user interface, divide it into separate
threads of control. Let one thread handle interactive tasks, such as user
input, and let the second thread handle CPU-intensive computations.

SELF-STUDY EXERCISES

EXERCISE 14.7 Someone might argue that because the Java Virtual Ma-
chine uses a round-robin scheduling algorithm, it’s redundant to use the
sleep() method, since the GUI thread will get its chance to run. What's
wrong with this argument for interface responsiveness?

EXERCISE 14.8 Instead of sleeping on each iteration, another way to
make the interface more responsive would be to set the threaded Dotty ’s
priority to a low number, such as 1. Make this change, and experiment
with its effect on the program’s responsiveness. Is it more or less respon-
sive than sleeping on each iteration? Why?

14.6 CASE STUDY: Cooperating Threads

For some applications it is necessary to synchronize and coordinate the
behavior of threads to enable them to carry out a cooperative task. Many
cooperative applications are based on the producer/consumer model. Ac-
cording to this model, two threads cooperate at producing and consuming
a particular resource or piece of data. The producer thread creates some
message or result, and the consumer thread reads or uses the result. The
consumer has to wait for a result to be produced, and the producer has to
take care not to overwrite a result that hasn’t yet been consumed. Many
types of coordination problems fit the producer/consumer model.

One example of an application for this model would be to control the
display of data that is read by your browser. As information arrives from
the Internet, it is written to a buffer by the producer thread. A sepa-
rate consumer thread reads information from the buffer and displays it

SECTION 14.6 o CASE STUDY: Cooperating Threads 677

in your browser window. Obviously, the two threads must be carefully
synchronized.

14.6.1 Problem Statement

To illustrate how to address the sorts of problems that can arise when you
try to synchronize threads, let’s consider a simple application in which
several threads use a shared resource. You're familiar with those take-
a-number devices that are used in bakeries to manage a waiting line.
Customers take a number when they arrive, and the clerk announces
who's next by looking at the device. As customers are called, the clerk
increments the “next customer” counter by one.

There are some obvious potential coordination problems here. The de-
vice must keep proper count and can’t skip customers. Nor can it give
the same number to two different customers. Nor can it allow the clerk to
serve nonexistent customers.

Our task is to build a multithreaded simulation that uses a model of a
take-a-number device to coordinate the behavior of customers and a (sin-
gle) clerk in a bakery waiting line. To help illustrate the various issues
involved in trying to coordinate threads, we will develop more than one
version of the program.

Problem Decomposition

This simulation will use four classes of objects. Figure 14.17 pro-
vides a UML representation of the interactions among the objects. The

: Take ANumber joe : Customer
! mary : Customer

\
: Baker } alicia : Clerk } pete : Customer
N
\ \ \ \

‘ create() ‘ \ \ \

S Each customer gets
[[71 \ \ \ diff b
‘ | create() | | | || adifferent number.
| ‘ ‘ N\ ‘
I 1 1 /\
} } create() } \J }
\ \ ‘ \ \ \
‘ | create() | / N
\ \ \ [7
\ | nextNumber() 4 \ \
} r ; } } The clerk serves the
‘ L nextNumber() | | || next customer in line.
} L nextNumber() }/y‘/
} nextCustomer() } } }
\ < \ \ \
\ \ \ \

TakeANumber object will serve as a model of a take-a-number device.
This is the resource that will be shared by the threads, but it is not a
thread itself. The Customer class, a subclass of Thread , will model the
behavior of a customer who arrives on line and takes a number from the

Simulating a waiting line

What classes do we need?

Figure 14.17: The Bakery creates
the Customer and Clerk threads
and the TakeANumber gadget.
Then Customer s request and re-
ceive waiting numbers and the
Clerk requests and receives the
number of the next customer to
serve.

TakeANumber
— next :int
— serving : int
+ nextNumber() : int
+ nextCustomer() : int

FIGURE 14.18 The TakeANumber
object keeps track of numbers and
customers.

Passing a reference to a shared object

Synchronized methods

678 CHAPTER 14 e Threads and Concurrent Programming

TakeANumber device. There will be several Customer threads created
that then compete for a space in line. The Clerk thread, which simulates
the behavior of the store clerk, should use the TakeANumber device to
determine who the next customer is and should serve that customer. Fi-
nally, there will be a main program that will have the task of creating and
starting the various threads. Let’s call this the Bakery class, which gives
us the following list of classes:

e Bakery —creates the threads and starts the simulation.

e TakeANumber—represents the gadget that keeps track of the next cus-
tomer to be served.

e Clerk —uses the TakeANumber to determine the next customer and
will serve the customer.

e Customer —represents the customers who will use the TakeANumber
to take their place in line.

14.6.2 Design: The TakeANumber Class

The TakeANumber class must track two things: Which customer will
be served next, and which waiting number the next customer will be
given. This suggests that it should have at least two public methods:
nextNumber() , which will be used by customers to get their waiting
numbers, and nextCustomer() , which will be used by the clerk to de-
termine who should be served (Fig. 14.18). Each of these methods will
simply retrieve the values of the instance variables, next and serving ,
which keep track of these two values. As part of the object’s state, these
variables should be private

How should we make this TakeANumber object accessible to all of
the other objects—that is, to all of the customers and to the clerk? The
easiest way to do that is to have the main program pass a reference to
the TakeANumber when it constructs the Customer s and the Clerk .
They can each store the reference as an instance variable. In this way,
all the objects in the simulation can share a TakeANumber object as a
common resource. Our design considerations lead to the definition of the
TakeANumber class shown in Figure 14.19.

Note that the nextNumber() method is declared synchronized . As
we will discuss in more detail, this ensures that only one customer at a
time can take a number. Once a thread begins executing a synchronized
method, no other thread can execute that method until the first thread
finishes. This is important because, otherwise, several Customer s could
call the nextNumber method at the same time. It’s important that the
customer threads have access only one at a time, also called mutually ex-
clusive access to the TakeANumber object. This form of mutual exclusion
is important for the correctness of the simulation.

SELF-STUDY EXERCISE

EXERCISE 14.9 What is the analogue to mutual exclusion in the real-
world bakery situation?

SECTION 14.6 o CASE STUDY: Cooperating Threads 679

class TakeANumber {
private int next = 0; // Next place in line
private int serving = 0; // Next customer to serve

public synchronized int nextNumber() {
next = next + 1;
return next;

} // mnextNumber ()

public int nextCustomer () {
++serving ;
return serving;

} // mextCustomer ()

} // TakeANumber

Figure 14.19: Definition of the TakeANumber class, Version 1.

14.6.3 Java Monitors and Mutual Exclusion

An object that contains synchronized = methods has a monitor associated

with it. A monitor is a widely used synchronization mechanism that en- The monitor concept
sures that only one thread at a time can execute a synchronized method.

When a synchronized method is called, a lock is acquired on that object.

For example, if one of the Customer threads calls nextNumber() ,alock

will be placed on that TakeANumber object. While an object is locked, no

other synchronized method can run in that object. Other threads must

wait for the lock to be released before they can execute a synchronized

method.

While one Customer is executing nextNumber() , all other Customer s Mutually exclusive access to a shared
will be forced to wait until the first Customer is finished. When the object
synchronized method is exited, the lock on the object is released, al-
lowing other Customer threads to access their synchronized meth-
ods. In effect, a synchronized method can be used to guarantee mu-
tually exclusive access to the TakeANumber object among the competing
customers.

JENZ. QU N\(€{O)Ne}2PROB: synchronized . Once a thread begins ?]
to execute a synchronized = method in an object, the object is locked so
that no other thread can gain access to that object’s synchronized
methods.

AN G PRERI(@N] Synchronization. In order to restrict
access of a method or set of methods to one object at a time (mutual
exclusion), declare the methods synchronized

One cautionary note here is that although a synchronized method blocks
access to other synchronized methods, it does not block access to nonsyn-
chronized methods. This could cause problems. We will return to this

Thread

+ run()

T

Customer

— number :int = 10000
— id :int
— takeANumber : Take ANumber

+ Customer(in gadget : Take ANumber)
+ run()

FIGURE 14.20 The Customer
thread.

Static (class) variables

680 CHAPTER 14 o Threads and Concurrent Programming

issue in the next part of our case study when we discuss the testing of our
program.

14.6.4 The Customer Class

A Customer thread should model the behavior of taking a number from
the TakeANumber gadget. For the sake of this simulation, let’s suppose
that after taking a number, the Customer object just prints it out. This will
serve as a simple model of “waiting on line.” What about the Customer ’s
state? To help distinguish one customer from another, let’s give each cus-
tomer a unique ID number starting at 10001, which will be set in the con-
structor method. Also, as we noted earlier, each Customer needs a ref-
erence to the TakeANumber object, which is passed as a constructor pa-
rameter (Fig. 14.20). This leads to the definition of Customer shown in
Figure 14.21. Note that before taking a number the customer sleeps for a
random interval of up to 1,000 milliseconds. This will introduce a bit of
randomness into the simulation.

public class Customer extends Thread {

private static int number = 10000; // Initial ID number
private int id;
private TakeANumber takeANumber;

public Customer(TakeANumber gadget) {
id = ++number;
takeANumber = gadget;

}

public void run() {

try {
sleep ((int)(Math.random() * 1000));
System.out. println ("Customer 7 + id +
7 takes ticket ” + takeANumber.nextNumber ());

} catch (InterruptedException e) {
System.out. println ("Exception ” + e.getMessage ());

}

} // run ()
} // Customer

Figure 14.21: Definition of the Customer class, Version 1.

Another important feature of this definition is the use of the static
variable number to assign each customer a unique ID number. Remem-
ber that a static variable belongs to the class itself, not to its instances.
Therefore, each Customer that is created can share this variable. By

SECTION 14.6 o CASE STUDY: Cooperating Threads 681

incrementing it and assigning its new value as the Customer ’s ID, we
guarantee that each customer has a unique ID number.

JE\ZAQ WG OVNCRNUIBE Static (Class) Variables. Static variables
are associated with the class itself and not with its instances.

AN HHE@INAEBIZSI@N]| Unique IDs. Static variables are often
used to assign a unique ID number or a unique initial value to each
instance of a class.

14.6.5 The Clerk Class

The Clerk thread should simulate the behavior of serving the
next customer in line, so the Clerk thread will repeatedly access
TakeANumber.nextCustomer() and then serve that customer. For
the sake of this simulation, we'll just print a message to indicate which
customer is being served. Because there’s only one clerk in this simu-
lation, the only variable in its internal state will be a reference to the
TakeANumber object (Fig. 14.22). In addition to the constructor, all we
really need to define for this class is the run() method. This leads to
the definition of Clerk shown in Figure 14.23. In this case, the sleep()
method is necessary to allow the Customer threads to run. The Clerk
will sit in an infinite loop serving the next customer on each iteration.

-~
public class Clerk extends Thread {

private TakeANumber takeANumber;

public Clerk (TakeANumber gadget) {
takeANumber = gadget;

}

public void run() {
while (true) {
try {
sleep((int)(Math.random() = 50));
System.out. println (”"Clerk serving ticket 7 +
takeANumber . nextCustomer ());
} catch (InterruptedException e) {
System.out. println (" Exception ”
}
} // while
} //run ()
} // Clerk

”

+ e.getMessage());

o

Figure 14.23: Definition of Clerk , Version 1.

Thread

+ run()

i

Clerk

— takeANumber : Take ANumber

+ Clerk(in gadget : Take ANumber)
+ run()

FIGURE 14.22 The Clerk thread.

The main program

Testing and debugging

682 CHAPTER 14 o Threads and Concurrent Programming

14.6.6 The Bakery Class

Finally, Bakery is the simplest class to design. It contains the main()
method, which gets the whole simulation started. As we said, its role will
be to create one Clerk thread and several Customer threads, and get
them all started (Fig. 14.24). Notice that the Customer s and the Clerk
are each passed a reference to the shared TakeANumber gadget.

public class Bakery {
public static void main(String args[]) {

} // main ()
} // Bakery

System.out. println (”Starting clerk and customer threads”);
TakeANumber numberGadget = new TakeANumber ();
Clerk clerk = new Clerk (numberGadget);
clerk.start ();
for (int k = 0; k < 5; k++) {
Customer customer = new Customer(numberGadget);
customer. start ();

}

Figure 14.24: Definition of the Bakery class.

Problem: Nonexistent Customers

Now that we have designed and implemented the classes, let’s run sev-
eral experiments to test that everything works as intended. Except for
the synchronized nextNumber() method, we’ve made little attempt
to make sure that the Customer and Clerk threads will work together
cooperatively, without violating the real-world constraints that should be
satisfied by the simulation. If we run the simulation as it is presently
coded, it will generate five customers and the clerk will serve all of them.
But we get something like the following output:

Starting clerk and customer threads
Clerk serving ticket 1
Clerk serving ticket 2
Clerk serving ticket 3
Clerk serving ticket 4
Clerk serving ticket 5

Customer 10004 takes ticket

Customer 10002 takes ticket 2
Clerk serving ticket 6

Customer 10005 takes ticket 3
Clerk serving ticket 7
Clerk serving ticket 8
Clerk serving ticket 9
Clerk serving ticket 10

Customer 10001 takes ticket

Customer 10003 takes ticket 5

—_

[

SECTION 14.6 o CASE STUDY: Cooperating Threads 683

Our current solution violates an important real-world constraint: You
can’t serve customers before they enter the line! How can we ensure
that the clerk doesn’t serve a customer unless there’s actually a customer
waiting?

The wrong way to address this issue would be to increase the amount
of sleeping that the Clerk does between serving customers. Indeed, this
would allow more customer threads to run, so it might appear to have
the desired effect, but it doesn’t truly address the main problem: A clerk
cannot serve a customer if no customer is waiting.

The correct way to solve this problem is to have the clerk check that
there are customers waiting before taking the next customer. One way
to model this would be to add a customerWaiting() method to our
TakeANumber object. This method would return true whenever next
is greater than serving . That will correspond to the real-world situation
in which the clerk can see customers waiting in line. We can make the
following modification to Clerk.run()

public void run() {
while (true) {
try {
sleep ((int)(Math.random () * 50));
if (takeANumber.customerWaiting ())
System.out. println (”Clerk serving ticket ”
+ takeANumber. nextCustomer ());
} catch (InterruptedException e) {
System.out. println (" Exception ”
}

} // while
Y /7 run ()

+ e.getMessage ());

And we add the following method to TakeANumber (Fig. 14.25):

‘ public boolean customerWaiting () {
\ return next > serving;

B

In other words, the Clerk won’t serve a customer unless there are cus-
tomers waiting—that is, unless next is greater than serving . Given

Problem: The clerk thread doesn’t
wait for customer threads

The clerk checks the line

Take ANumber
— next :int
— serving : int
+ nextNumber() : int

+ nextCustomer() : int
+ customerWaiting() : boolean

FIGURE 14.25 The revised
TakeANumber class.

Thread interruptions are
unpredictable

684 CHAPTER 14 o Threads and Concurrent Programming

these changes, we get the following type of output when we run the
simulation:

Starting clerk and customer threads
Customer 10003 takes ticket 1
Clerk serving ticket 1
Customer 10005 takes ticket 2
Clerk serving ticket 2
Customer 10001 takes ticket 3
Clerk serving ticket 3
Customer 10004 takes ticket 4
Clerk serving ticket 4
Customer 10002 takes ticket 5
Clerk serving ticket 5

This example illustrates that when application design involves cooperat-
ing threads, the algorithm used must ensure the proper cooperation and
coordination among the threads.

I\ TG NAAEEBI NI (@] Thread Coordination. When two or
more threads must behave cooperatively, their interaction must be
carefully coordinated by the algorithm.

14.6.7 Problem: Critical Sections

It is easy to forget that thread behavior is asynchronous. You can’t pre-
dict when a thread might be interrupted or might have to give up the
CPU to another thread. In designing applications that involve cooperat-
ing threads, it’s important that the design incorporates features to guard
against problems caused by asynchronicity. To illustrate this problem,
consider the following statement from the Customer.run() method:

‘ System.out. println (”"Customer 7 + id +
‘ ” takes ticket ” + takeANumber.nextNumber ());

Even though this is a single Java statement, it breaks up into several Java
bytecode statements. A Customer thread could certainly be interrupted
between getting the next number back from TakeANumber and printing it

SECTION 14.6 o CASE STUDY: Cooperating Threads 685

out. We can simulate this by breaking the printin() into two statements
and putting a sleep() in their midst:

public void run() {
try {

int myturn = takeANumber.nextNumber ();
sleep ((int)(Math.random () * 1000));
System.out. println ("Customer 7 + id +

” takes ticket + myturn);

} catch (InterruptedException e) {

System.out. println (" Exception ”

}

} // run ()

”

+ e.getMessage ());

If this change is made in the simulation, you might get the following
output:

Starting clerk and customer threads
Clerk serving ticket 1
Clerk serving ticket 2
Clerk serving ticket 3
Customer 10004 takes ticket 4
Clerk serving ticket 4
Clerk serving ticket 5
Customer 10001 takes ticket
Customer 10002 takes ticket
Customer 10003 takes ticket
Customer 10005 takes ticket

91 W N =

Because the Customer threads are now interrupted in between taking a
number and reporting their number, it looks as if they are being served in
the wrong order. Actually, they are being served in the correct order. It’s
their reporting of their numbers that is wrong!

The problem here is that the Customer.run() method is being in-
terrupted in such a way that it invalidates the simulation’s output. A
method that displays the simulation’s state should be designed so that
once a thread begins reporting its state, that thread will be allowed to fin-
ish reporting before another thread can start reporting its state. Accurate
reporting of a thread’s state is a critical element of the simulation’s overall
integrity.

A critical section is any section of a thread that should not be inter-
rupted during its execution. In the bakery simulation, all of the statements
that report the simulation’s progress are critical sections. Even though
the chances are small that a thread will be interrupted in the midst of
a printin() statement, the faithful reporting of the simulation’s state
should not be left to chance. Therefore, we must design an algorithm that
prevents the interruption of critical sections.

Creating a Critical Section

The correct way to address this problem is to treat the reporting of the cus-
tomer’s state as a critical section. As we saw earlier when we discussed

Problem: An interrupt in a critical
section

Making a critical section
uninterruptible

686 CHAPTER 14 o Threads and Concurrent Programming

the concept of a monitor, a synchronized method within a shared ob-
ject ensures that once a thread starts the method, it will be allowed to
finish it before any other thread can start it. Therefore, one way out of
this dilemma is to redesign the nextNumber() and nextCustomer()
methods in the TakeANumber class so that they report which customer
receives a ticket and which customer is being served (Fig. 14.26). In this
version all of the methods are synchronized , so all the actions of the
TakeANumber object are treated as critical sections.

public class TakeANumber {
private int next = 0; // Next place in line
private int serving = 0; // Next customer to serve

public synchronized int nextNumber(int custld) {
next = next + 1;
System.out. println ("Customer

” ”

+ custld +
takes ticket

”

+ next);
return next;
} // mnextNumber ()
public synchronized int nextCustomer () {
++serving ;
System.out. println(” Clerk serving ticket ”
+ serving);
return serving;
} // mextCustomer ()
public synchronized boolean customerWaiting () {
return next > serving;
} // customerWaiting ()
} // TakeANumber

Figure 14.26: Definition of the TakeANumber class, Version 2.

Note that the reporting of both the next number and the next customer
to be served are now handled by TakeANumber in Figure 14.26 . Because
the methods that handle these actions are synchronized , they cannot be
interrupted by any threads involved in the simulation. This guarantees
that the simulation’s output will faithfully report the simulation’s state.

SECTION 14.6 o CASE STUDY: Cooperating Threads 687

Given these changes to TakeANumber, we must remove the printin()
statements from the run() methods in Customer :

public void run() {
try {
sleep ((int)(Math.random () * 2000));
takeANumber . nextNumber (id);
} catch (InterruptedException e) {
System.out. println (" Exception: "+ e.getMessage());
}

Y /7 run ()

and from the run() method in Clerk :

public void run() {
while (true) {
try {
sleep ((int)(Math.random() = 1000));
if (takeANumber.customerWaiting ())
takeANumber . nextCustomer () ;
} catch (InterruptedException e) {
System.out. println (" Exception: “+e.getMessage());
}
} // while
} // run ()

Rather than printing their numbers, these methods now just call the ap-
propriate methods in TakeANumber. Given these design changes, our
simulation now produces the following correct output:

Starting clerk and customer threads
Customer 10001 takes ticket 1
Clerk serving ticket 1
Customer 10003 takes ticket 2
Customer 10002 takes ticket 3
Clerk serving ticket 2
Customer 10005 takes ticket 4
Customer 10004 takes ticket 5
Clerk serving ticket 3
Clerk serving ticket 4
Clerk serving ticket 5

The lesson to be learned from this is that in designing multithreaded pro-
grams, it is important to assume that if a thread can be interrupted at a
certain point, it will be interrupted at that point. The fact that an interrupt

Preventing undesirable interrupts

Busy waiting

688 CHAPTER 14 o Threads and Concurrent Programming

is unlikely to occur is no substitute for the use of a critical section. This is
something like “Murphy’s Law of Thread Coordination.”

JENZN S GIUAASPPIENI[@N] The Thread Coordination Principle. Use
critical sections to coordinate the behavior of cooperating threads. By
designating certain methods as synchronized, you can ensure their
mutually exclusive access. Once a thread starts a synchronized
method, no other thread will be able to execute the method until the
first thread is finished.

In a multithreaded application, the classes and methods should be de-
signed so that undesirable interrupts will not affect the correctness of the
algorithm.

ANZAURNO@IRTANY Y IN[@HNIE Critical Sections. Java’s monitor
mechanism will ensure that while one thread is executing a
synchronized method, no other thread can gain access to it. Even if the
first thread is interrupted, when it resumes execution again it will be
allowed to finish the synchronized method before other threads can
access synchronized methods in that object.

SELF-STUDY EXERCISE

EXERCISE 14.10 Given the changes we’ve described, the bakery sim-
ulation should now run correctly regardless of how slow or fast the
Customer and Clerk threads run. Verify this by placing different-sized
sleep intervals in their run() methods. (Note: You don’t want to put a
sleep() in the synchronized methods because that would undermine
the whole purpose of making them synchronized in the first place.)

14.6.8 Using wait/notify to Coordinate Threads

The examples in the previous sections were designed to illustrate the is-
sue of thread asynchronicity and the principles of mutual exclusion and
critical sections. Through the careful design of the algorithm and the ap-
propriate use of the synchronized qualifier, we have managed to design
a program that correctly coordinates the behavior of the Customer s and
Clerk in this bakery simulation.

The Busy-Waiting Problem

One problem with our current design of the Bakery algorithm is that it
uses busy waiting on the part of the Clerk thread. Busy waiting occurs
when a thread, while waiting for some condition to change, executes a
loop instead of giving up the CPU. Because busy waiting is wasteful of
CPU time, we should modify the algorithm.

SECTION 14.6 o CASE STUDY: Cooperating Threads 689

As it is presently designed, the Clerk thread sits in a loop that repeat-
edly checks whether there’s a customer to serve:

public void run() {
while (true) {
try {
sleep ((int)(Math.random() = 1000));
if (takeANumber.customerWaiting ())
takeANumber . nextCustomer () ;
} catch (InterruptedException e) {
System.out. println (" Exception: ” + e.getMessage());
}
} // while
Y /7 run ()

A far better solution would be to force the Clerk thread to wait un-
til a customer arrives without using the CPU. Under such a design, the
Clerk thread can be notified and enabled to run as soon as a Customer
becomes available. Note that this description views the customer/clerk
relationship as one-half of the producer/consumer relationship. When a
customer takes a number, it produces a customer in line that must be served
(that is, consumed) by the clerk.

This is only half the producer/consumer relationship because we
haven’t placed any constraint on the size of the waiting line. There’s no
real limit to how many customers can be produced. If we did limit the
line size, customers might be forced to wait before taking a number if, say,
the tickets ran out, or the bakery filled up. In that case, customers would
have to wait until the line resource became available and we would have
a full-fledged producer/consumer relationship.

The wait/notify Mechanism

So, let’s use Java’s wait/notify mechanism to eliminate busy waiting
from our simulation. As noted in Figure 14.6, the wait() = method puts
a thread into a waiting state, and notify() takes a thread out of wait-
ing and places it back in the ready queue. To use these methods in this
program we need to modify the nextNumber() and nextCustomer()

Producer/consumer

A waiting thread gives up the CPU

690 CHAPTER 14 e Threads and Concurrent Programming

methods. If there is no customer in line when the Clerk calls the
nextCustomer() method, the Clerk should be made to wait()

public synchronized int nextCustomer () {

try {
while (next <= serving)
wait ();
} catch(InterruptedException e) {
System.out. println (" Exception: ” + e.getMessage());
} finally {

++serving ;
System.out. println (” Clerk serving ticket ” + serving);
return serving;

Note that the Clerk still checks whether there are customers waiting. If
there are none, the Clerk calls the wait() method. This removes the
Clerk from the CPU until some other thread notifies it, at which point
it will be ready to run again. When it runs again, it should check that
there is in fact a customer waiting before proceeding. That’s why we use a
while loop here. In effect, the Clerk will wait until there’s a customer to
serve. This is not busy waiting because the Clerk thread loses the CPU
and must be notified each time a customer becomes available.

When and how will the Clerk be notified? Clearly, the Clerk should
be notified as soon as a customer takes a number. Therefore, we put a
notify() in the nextNumber() method, which is the method called by
each Customer as it gets in line:

public synchronized int nextNumber(int custld) {
next = next + 1;
System.out. println ("Customer ” + custld +
" takes ticket ” + next);
notify ();
return next;

}

Thus, as soon as a Customer thread executes the nextNumber()
method, the Clerk will be notified and allowed to proceed.

What happens if more than one Customer has executed a wait() ? In
that case, the JVM will maintain a queue of waiting Customer threads.
Then, each time a notify() is executed, the JVM will take the first
Customer out of the queue and allow it to proceed.

If we use this model of thread coordination, we no longer need to test
customerWaiting() in the Clerk.run() method. It is to be tested in

SECTION 14.6 o

CASE STUDY: Cooperating Threads 691

the TakeANumber.nextCustomer()
simplified to

. Thus, the Clerk.run() can be

public void run() {
while (true) {

try {
sleep ((int)(Math.random () * 1000));
takeANumber . nextCustomer () ;

} catch (InterruptedException e) {
System.out. println ("Exception: “+ e.getMessage ());

}

} // while
} // run ()

The Clerk thread may be forced to wait when it calls the nextCustomer
method.

Because we no longer need the customerWaiting() method, we
end up with the new definition of TakeANumber shown in Figures 14.27
and 14.28.

&

~
public class TakeANumber {

private int next = 0;
private int serving = 0;

public synchronized int nextNumber(int custld) {
next = next + 1;
System.out. println ("Customer

”

”

+ custld +
takes ticket ” + next);
notify ();
return next;
Yo

nextNumber ()

public synchronized int nextCustomer () {
try {
while (next <= serving) {
System.out. println(” Clerk waiting 7);
wait ();

} catch(InterruptedException e) {
System.out. println (" Exception

} finally {
++serving ;
System . out. println (

”

+ e.getMessage ());

” ”

Clerk serving ticket
+ serving);
return serving;
} // mnextCustomer ()
} // TakeANumber

Figure 14.28: The TakeANumber class, Version 3.

Take ANumber

— next :int
— serving : int

+ nextNumber() : int<<synchronized>>
+ nextCustomer() : int<<synchronized>>

FIGURE 14.27 In the final design of
TakeANumber, its methods are
synchronized.

692 CHAPTER 14 o Threads and Concurrent Programming

Given this version of the program, the following kind of output will be
generated:

Starting clerk and customer threads

Customer 10004 takes ticket 1

Customer 10002 takes ticket 2
Clerk serving ticket 1
Clerk serving ticket 2

Customer 10005 takes ticket 3

Customer 10003 takes ticket 4
Clerk serving ticket 3

Customer 10001 takes ticket 5
Clerk serving ticket 4
Clerk serving ticket 5
Clerk waiting

PANCRRCIERVNVIVINENNIE Busy Waiting. Java’s wait/notify
mechanism can be used effectively to eliminate busy waiting from a
multithreaded application.

I\ G UAAEBIESI (@] Producer/Consumer. The
producer/consumer model is a useful design for coordinating the
wait/notify interaction.

SELF-STUDY EXERCISE

EXERCISE 14.11 An interesting experiment to try is to make the Clerk
a little slower by making it sleep for up to 2,000 milliseconds. Take a
guess at what would happen if you ran this experiment. Then run the
experiment and observe the results.

The wait/notify Mechanism

Wait/notify go into synchronized There are a number of important restrictions that must be observed when

methods

using the wait/notify mechanism:

e Both wait() and notify() are methods of the Object class, not the
Thread class. This enables them to lock objects, which is the essential
feature of Java’s monitor mechanism.

e Await() method can be used within a synchronized method. The
method doesn’t have to be part of a Thread .

e You can only use wait() and notify() within synchronized
methods. If you use them in other methods, you will cause
an lllegalMonitorStateException with the message “current
thread not owner.”

e When a wait() —or a sleep() —is used within a synchronized
method, the lock on that object is released so that other methods can
access the object’s synchronized = methods.

SECTION 14.7 o CASE STUDY: The Game of Pong 693

NP CIE[@INENNIE Wait/Notify. It's easy to forget that the
wait() and notify() methods can only be used within
synchronized methods.

14.7 CASE STUDY: The Game of Pong

The game of Pong was one of the first computer video games and was all
the rage in the 1970s. The game consists of a ball that moves horizontally
and vertically within a rectangular region, and a single paddle, which is
located at the right edge of the region that can be moved up and down by
the user. When the ball hits the top, left, or bottom walls or the paddle,
it bounces off in the opposite direction. If the ball misses the paddle, it
passes through the right wall and re-emerges at the left wall. Each time
the ball bounces off a wall or paddle, it emits a pong sound.

14.7.1 A Multithreaded Design

Let’s develop a multithreaded applet to play the game of Pong.
Figure 14.29 shows how the game’s GUI should appear. There are three
objects involved in this program: the applet, which serves as the GUI, the
ball, which is represented as a blue circle in the applet, and the paddle,
which is represented by a red rectangle along the right edge of the applet.
What cannot be seen in this figure is that the ball moves autonomously,
bouncing off the walls and paddle. The paddle’s motion is controlled by
the user by pressing the up- and down-arrow keys on the keyboard.

We will develop class definitions for the ball, paddle, and the applet.
Following the example of our dot-drawing program earlier in the Chapter,
we will employ two independent threads, one for the GUI and one for
the ball. Because the user will control the movements of the paddle, the
applet will employ a listener object to listen for and respond to the user’s
key presses.

Figure 14.30 provides an overview of the object-oriented design of the
Pong program. The PongApplet class is the main class. It uses in-
stances of the Ball and Paddle classes. PongApplet is a subclass of
JApplet and implements the KeyListener interface. This is another of
the several event handlers provided in the java.awt library. This one
handles KeyEvent s and the KeyListener interface consists of three ab-
stract methods: keyPressed() ,keyTyped() ,andkeyReleased() ,all
of which are associated with the act of pressing a key on the keyboard.
All three of these methods are implemented in the PongApplet class. A
key-typed event occurs when a key is pressed down. A key-release event
occurs when a key that has been pressed down is released. A key-press
event is a combination of both of these events.

The Ball class is a Thread subclass. Its data and methods are de-
signed mainly to keep track of its motion within the applet’s drawing
panel. The design strategy employed here leaves the drawing of the ball
up to the applet. The Ball thread itself just handles the movement within
the applet’s drawing panel. Note that the Ball() constructor takes a ref-
erence to the PongApplet . As we will see, the Ball uses this reference

FIGURE 14.29 The UI for Pong.

Figure 14.30: Design of the Pong
program.

694 CHAPTER 14 e Threads and Concurrent Programming

Pong dspplet JApplet
- ball:Ball
- .pe.nddle- FPaddle <Linterfacer»
in |_t|::l _ Keylistener
+paintig :Graphics)

+hallHitsPaddlel) boolean
+keypr9559dl:e :HEFE'\\rentj .. H
ey Typedle KevEvent)

HeewReleazed(e KevEvent) Thread
5es
Faddle =
+ HEIGHT, WIDTH :int TEEE

- DELT &, BORDER :int

= locations, location'' it
- garme &reaHeight int

- applet :Pongdpplet
+Faddlelapp Fongdpplet)

- applet :Pongdpplet

- topwall, bottormwall,
leftw'all, rightwall:int

= locations, locationy' it

- direction#, dirction'' int

+ getia() int + Balllapp Fong Applet)
+ geti'()int + geti()int

+ rnovelp() + qety() int

+ moveDownl() + rnovel)

+ resetlocation() + runl)

to set the dimensions of the applet’s drawing panel. Also, as the Ball
moves, it will repeatedly call the applet’s repaint() method to draw
the ball.

The Paddle class is responsible for moving the paddle up and down
along the drawing panel’s right edge. Its public methods, moveUP() and
moveDown() , will be called by the applet in response to the user pressing
the up and down arrows on the keyboard. Because the applet needs to
know where to draw the applet, the paddle class contains several public
methods, getX() , getY() , and resetLocation() , whose tasks are to
report the paddle’s location or to adjust its location in case the applet is
resized.

The PongApplet controls the overall activity of the program. Note
in particular its ballHitsPaddle() method. This method has the task
of determining when the ball and paddle come in contact as the ball
continuously moves around in the applet’s drawing panel. As in the
ThreadedDotty example earlier in the chapter, it is necessary for the
Ball and the the applet to be implemented as separated threads so that
the applet can be responsive to the user’s key presses.

14.7.2 Implementation of the Pong Program

We begin our discussion of the program’s implementation with the
Paddle class implementation (Fig. 14.31).

SECTION 14.7 o CASE STUDY: The Game of Pong 695

public class Paddle {
public static final int HEIGHT = 50; // Paddle size
public static final int WIDIH = 10;
private static final int DELTA = HEIGHT/2; // Move size
private static final int BORDER = 0;
private int gameAreaHeight;
private int locationX, locationY;
private PongApplet applet;

public Paddle (PongApplet a) {
applet = a;
gameAreaHeight = a.getHeight();
locationX = a.getWidth() -WIDITH;
locationY = gameAreaHeight/2;

} /7 Paddle ()

public void resetLocation () {
gameAreaHeight = applet.getHeight();
locationX = applet.getWidth() —-WIDTH;

¥

public int getX () {

return locationX;
¥

public int getY () {
return locationY;
}

public void moveUp () {
if (locationY > BORDER)
locationY —= DELTA;
} // moveUp ()
public void moveDown() {
if (locationY + HEIGHT < gameAreaHeight — BORDER)
locationY += DELTA;
} // moveDown ()
} // Paddle

Figure 14.31: Definition of the Paddle class.

Class constants, HEIGHT and WIDTHare used to define the size of the
Paddle , which is represented on the applet as a simple rectangle. The
applet will use the Graphics.fillRect() method to draw the paddle:

[g. fillRect (pad.getX (), pad.getY () ,Paddle .WIDTH, Paddle .HEIGHT); }

Note how the applet uses the paddle’s getX() and getY() methods to
get the paddle’s current location.

The class constants DELTAand BORDERTre used to control the paddle’s
movement. DELTArepresents the number of pixels that the paddle moves
on each move up or down, and BORDERs used with gameAreaHeight
to keep the paddle within the drawing area. The moveUp() and
moveDown() methods are called by the applet each time the user presses
an up- or down-arrow key. They simply change the paddle’s location by
DELTApixels up or down.

696 CHAPTER 14 e Threads and Concurrent Programming

The Ball class (Fig. 14.32) uses the class constant SIZE to determine
the size of the oval that represents the ball, drawn by the applet as follows:

-
tg. fillOval(ball.getX (), ball.getY (), ball.SIZE, ball .SIZE); J

As with the paddle, the applet uses the ball’s getX() and getY()
method to determine the ball’s current location.

Unlike the paddle, however, the ball moves autonomously. Its run()
method, which is inherited from its Thread superclass, repeatedly moves
the ball, draws the ball, and then sleeps for a brief interval (to slow down
the speed of the ball’s apparent motion). The run() method itself is quite
simple because it consists of a short loop. We will deal with the details of
how the ball is painted on the applet when we discuss the applet itself.

The most complex method in the Ball class is the move() method.
This is the method that controls the ball’s movement within the bound-
aries of the applet’s drawing area. This method begins by moving the
ball by one pixel left, right, up, or down by adjusting the values of its
locationX and locationY coordinates:

‘ locationX = locationX + directionX; // Calculate location ‘
‘ locationY = locationY + directionY; ‘

The directionX and directionY variables are set to either +1 or —1,
depending on whether the ball is moving left or right, up or down. After
the ball is moved, the method uses a sequence of if statements to check
whether the ball is touching one of the walls or the paddle. If the ball is
in contact with the top, left, or bottom walls or the paddle, its direction
is changed by reversing the value of the directionX or directionY
variable. The direction changes depend on whether the ball has touched
a horizontal or vertical wall. When the ball touches the right wall, having
missed the paddle, it passes through the right wall and re-emerges from
the left wall going in the same direction.

Note how the applet method, ballHitsPaddle() is used to deter-
mine whether the ball has hit the paddle. This is necessary because only
the applet knows the locations of both the ball and the paddle.

14.7.3 The KeyListener Interface

The implementation of the PongApplet class is shown in figure 14.33.
The applet’s main task is to manage the drawing of the ball and paddle
and to handle the user’s key presses. Handling keyboard events is a sim-
ple matter of implementing the KeyListener interface. This works in
much the same way as the ActionListener interface, which is used
to handle button clicks and other ActionEvent s. Whenever a key is
pressed, it generates KeyEvent s, which are passed to the appropriate
methods of the KeyListener interface.

There’s a bit of redundancy in the KeyListener interface in the sense
that a single key press and release generates three KeyEvent s: A key-
typed event, when the key is pressed, a key-released event, when the key
isreleased, and a key-pressed event, when the key is pressed and released.

SECTION 14.7 o CASE STUDY: The Game of Pong 697

import javax.swing.x;
import java.awt. Toolkit;

public class Ball extends Thread ({
public static final int SIZE = 10; // Diameter of the ball

private POHgApplet applet; // Reference to the applet
private int topWall, bottomWall, leftWall, rightWall; // Boundaries
private int locationX, locationY; // Current location of the ball
private int directionX = 1, directionY = 1; //x- and y-direction (1 or

private Toolkit kit = Toolkit.getDefaultToolkit(); //For beep () method

public Ball (PongApplet app) {
applet = app;
locationX = leftWall + 1; // Set initial location
locationY = bottomWall/2;
} /7 Ball ()
public int getX() {
return locationX;
Y /7 getx ()
public int getY () {
return locationY;
Y /7 gety ()
public void move() {
rightWall = applet.getWidth() — SIZE; // Define bouncing region

leftWall = topWall = 0; // And location of walls
bottomWall = applet.getHeight() — SIZE;
locationX = locationX + directionX; // Calculate a new location

locationY = locationY + directionY;

if (applet.ballHitsPaddle()){
directionX = —1; // move toward left wall
kit .beep ();
} //if ball hits paddle
if (locationX <= leftWall){
directionX = + 1,' // move toward right wall
kit .beep ();
} //if ball hits left wall
if (locationY + SIZE >= bottomWall || locationY <= topWall){

directionY = —directionY; // reverse direction
kit .beep ();
} //if ball hits top or bottom walls

if (locationX >= rightWall + SIZE) {
locationX = leftWall + 1; // jump back to left wall
} //if ball goes through right wall
} // move ()
public void run() {
while (true) {
move(); // Move
applet.repaint ();
try { sleep(15);
} catch (InterruptedException e) {}
} /7 while
} // run ()
} // Ball

Figure 14.32: Definition of the Ball class.

698 CHAPTER 14 o Threads and Concurrent Programming

import
import
import

public

private Ball ball;
private Paddle pad;

public void init() {

}

public void paint (Graphics g) {

}

}

public void keyPressed(KeyEvent e) { // Check for arrow keys

}

public void keyTyped(KeyEvent e) {} // Unused
public void keyReleased(KeyEvent e) {} // Unused
} // PongApplet

public boolean ballHitsPaddle() {

javax.swing . x*;
java.awt.x;
java.awt.event.x;

class PongApplet extends JApplet implements KeyListener {

setBackground (Color . white);

addKeyListener (this);

pad = new Paddle(this); // Create the paddle

ball = new Ball(this); // Create the ball

ball.start ();

requestFocus(); // Required to receive key events
// init ()

g.setColor (getBackground ()); // Erase the drawing area
g.fillRect (0,0, getWidth (), getHeight ());

g.setColor (Color.blue); // Paint the ball
g. fillOval(ball.getX (), ball.getY (), ball.SIZE, ball.SIZE);

pad.resetLocation (); // Paint the paddle

g.setColor(Color.red);

g.fillRect (pad.getX (), pad.getY (),Paddle .WIDTH, Paddle .HEIGHT);
// paint ()

return ball.getX () + Ball.SIZE >= pad.getX()
&& ball.getY () >= pad.getY ()
&& ball.getY () <= pad.getY() + Paddle .HEIGHT;
// ballHitsPaddle ()

int keyCode = e.getKeyCode ();

if (keyCode == e.VK,UP) // Up arrow
pad.moveUp ();
else if (keyCode == e VKDOWN) // Down arrow

pad .moveDown () ;
// keyReleased ()

Figure 14.33: Definition of the PongApplet class.

SECTION 14.7 o CASE STUDY: The Game of Pong 699

While it is important for some programs to be able to distinguish be-
tween a key-typed and key-released event, for this program, we will take
action whenever one of the arrow keys is pressed (typed and released).
Therefore, we implement the keyPressed() = method as follows:

public void keyPressed(KeyEvent e) { // Check arrow keys
int keyCode = e.getKeyCode();
if (keyCode == e.VK.UP) // Up arrow
pad.moveUp ();
else if (keyCode == eVK]I?WN) // Down arrow
pad .moveDown () ;
} // keyReleased ()

Each key on the keyboard has a unique code that identifies the key.
The key’s code is gotten from the KeyEvent object by means of the
getKeyCode() method. Then it is compared with the codes for the up-
arrow and down-arrow keys, which are implemented as class constants,
VK.UPand VK. DOWNn the KeyEvent class. If either of those keys were
typed, the appropriate paddle method, moveUP() or moveDown() , is
called.

Note that even though we are not using the keyPressed() and
keyReleased() methods in this program, it is still necessary to provide
implementations for these methods in the applet. In order to implement
an interface, such as the KeyListener interface, you must implement
all the abstract methods in the interface. That is why we provide triv-
ial implementations of both the keyPressed() and keyReleased()
methods.

14.7.4 Animating the Bouncing Ball

Computer animation is accomplished by repeatedly drawing, erasing, and
re-drawing an object at different locations on the drawing panel. The
applet’s paint() method is used for drawing the ball and the paddle
at their current locations. The paint() = method is never called directly.
Rather, it is called automatically after the init() method, when the ap-
plet is started. It is then invoked indirectly by the program by calling the
repaint() method, which is called in the run() method of the Ball
class. The reason that paint() is called indirectly is because Java needs
to pass it the applet’s current Graphics object. Recall that in Java all
drawing is done using a Graphics object.

In order to animate the bouncing ball, we first erase the current image
of the ball, then we draw the ball in its new location. We also draw the
paddle in its current location. These steps are carried out in the applet’s
paint() method. First, the drawing area is cleared by painting its rect-
angle in the background color. Then the ball and paddle are painted at
their current locations. Note that before painting the paddle, we first call
its resetLocation() method. This causes the paddle to be relocated in
case the user has resized the applet’s drawing area. There is no need to
do this for the ball because the ball’s drawing area is updated within the
Ball.lmove() method every time the ball is moved.

Double buffering

700 CHAPTER 14 o Threads and Concurrent Programming

One problem with computer animations of this sort is that the repeated
drawing and erasing of the drawing area can cause the screen to flicker.
In some drawing environments a technique known as double buffering
is used to reduce the flicker. In double buffering, an invisible, off-screen,
buffer is used for the actual drawing operations and it is then used to
replace the visible image all at once when the drawing is done. Fortu-
nately, Java’s Swing components, including JApplet and JFrame, per-
form an automatic form of double buffering, so we needn’t worry about
it. Some graphics environments, including Java’s AWT environment, do
not perform double buffering automatically, in which case the program
itself must carry it out.

Like the other examples in this chapter, the game of Pong provides a
simple illustration of how threads are used to coordinate concurrent ac-
tions in a computer program. As most computer game fans will realize,
most modern interactive computer games utilize a multithreaded design.
The use of threads allows our interactive programs to achieve a respon-
siveness and sophistication that is not possible in single-threaded pro-
grams. One of the great advantages of Java is that it simplifies the use of
threads, thereby making thread programming accessible to programmers.
However, one of the lessons that should be drawn from this chapter is
that multithreaded programs must be carefully designed in order to work
effectively.

SELF-STUDY EXERCISE

EXERCISE 14.12 Modify the PongApplet program so that it contains
a second ball that starts at a different location from the first ball.

CHAPTER SUMMARY

Technical Terms

asynchronous multitasking round-robin

blocked multithreaded scheduling

busy waiting mutual exclusion scheduling algorithm
concurrent priority scheduling task

critical section producer/consumer thread

dispatched model thread life cycle
fetch-execute cycle quantum time slicing

lock queue

monitor ready queue

Summary of Important Points

o Multitasking is the technique of executing several tasks at the same time
within a single program. In Java we give each task a separate thread of
execution, thus resulting in a multithreaded program.

o A sequential computer with a single central processing unit (CPU) can
execute only one machine instruction at a time. A paralle] computer
uses multiple CPUs operating simultaneously to execute more than one
instruction at a time.

CHAPTER 14 o Chapter Summary 701

e Each CPU uses a fetch-execute cycle to retrieve the next machine in-
struction from memory and execute it. The cycle is under the control
of the CPU'’s internal clock, which typically runs at several hundred
megahertz—where 1 megahertz (MHz) is 1 million cycles per second.

o Time slicing is the technique whereby several threads can share a single
CPU over a given time period. Each thread is given a small slice of the
CPU'’s time under the control of some kind of scheduling algorithm.

o In round-robin scheduling, each thread is given an equal slice of time,
in a first-come-first-served order. In priority scheduling, higher-priority
threads are allowed to run before lower-priority threads are run.

o There are generally two ways of creating threads in a program. One is
to create a subclass of Thread and implement a run() method. The
other is to create a Thread instance and pass it a Runnable object—
that is, an object that implements run()

e The sleep() method removes a thread from the CPU for a determi-
nate length of time, giving other threads a chance to run.

e The setPriority() method sets a thread’s priority. Higher-priority
threads have more and longer access to the CPU.

e Threads are asynchronous. Their timing and duration on the CPU are
highly sporadic and unpredictable. In designing threaded programs,
you must be careful not to base your algorithm on any assumptions
about the threads’ timing.

e To improve the responsiveness of interactive programs, you could
give compute-intensive tasks, such as drawing lots of dots, to a lower-
priority thread or to a thread that sleeps periodically.

e A thread’s life cycle consists of ready, running, waiting, sleeping, and
blocked states. Threads start in the ready state and are dispatched to
the CPU by the scheduler, an operating system program. If a thread
performs an I/O operation, it blocks until the I/O is completed. If it
voluntarily sleeps, it gives up the CPU.

e According to the producer/consumer model, two threads share a re-
source, one serving to produce the resource and the other to consume
the resource. Their cooperation must be carefully synchronized.

e An object that contains synchronized = methods is known as a mon-
itor. Such objects ensure that only one thread at a time can execute a
synchronized method. The object is locked until the thread completes
the method or voluntarily sleeps. This is one way to ensure mutually
exclusive access to a resource by a collection of cooperating threads.

e The synchronized qualifier can also be used to designate a method
as a critical section, whose execution should not be preempted by one of
the other cooperating threads.

e In designing multithreaded programs, it is useful to assume that if a
thread can be interrupted at a certain point, it will be interrupted there.
Thread coordination should never be left to chance.

e One way of coordinating two or more cooperating threads is to use
the wait/notify combination. One thread waits for a resource to
be available, and the other thread notifies when a resource becomes
available.

702 CHAPTER 14 o Threads and Concurrent Programming

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 14.1

public class PrintOdds implements Runnable {
private int bound;
public PrintOdds(int b) {
bound = b;
}

public void print() {
if (int k = 1; k < bound; k+=2)
System.out. println (k);
}

public void run() {
print ();

SOLUTION 14.2 On my system, the experiment yielded the following output, if
each thread printed its number after every 100,000 iterations:

‘ 1111112222222211111111333333322222221111113333333 ‘
‘ 222224444444433333344444445555555544444555555555555 ‘

This suggests that round-robin scheduling is being used.

SOLUTION 14.3 If each thread is given 50 milliseconds of sleep on each itera-
tion, they tend to run in the order in which they were created:

[123451234512345... }

SOLUTION 14.4 The garbage collector runs whenever the available memory
drops below a certain threshold. It must have higher priority than the application,
since the application won’t be able to run if it runs out of memory.

SOLUTION 14.5 To improve the responsiveness of an interactive program, the
system could give a high priority to the threads that interact with the user and a
low priority to those that perform noninteractive computations, such as number
crunching.

SOLUTION 14.6 If the JVM were single threaded, it wouldn’t be possible to
break out of an infinite loop, because the program’s loop would completely con-
sume the CPU’s attention.

SOLUTION 14.7 If round-robin scheduling is used, each thread will be get a por-
tion of the CPU’s time, so the GUI thread will eventually get its turn. But you don’t
know how long it will be before the GUI gets its turn, so there might still be an
unacceptably long wait before the user’s actions are handled. Thus, to guarantee
responsiveness, it is better to have the drawing thread sleep on every iteration.

SOLUTION 14.8 If Dotty ’s priority is set to 1, a low value, this does improve
the responsiveness of the interface, but it is significantly less responsive than using
asleep() on each iteration.

CHAPTER 14 o Exercises 703

SOLUTION 14.9 Inareal bakery only one customer at a time can take a number.
The take-a-number gadget “enforces” mutual exclusion by virtue of its design:
There’s room for only one hand to grab the ticket and there’s only one ticket per
number. If two customers got “bakery rage” and managed to grab the same ticket,
it would rip in half and neither would benefit.

SOLUTION 14.10 One experiment to run would be to make the clerk’s perfor-
mance very slow by using large sleep intervals. If the algorithm is correct, this
should not affect the order in which customers are served. Another experiment
would be to force the clerk to work fast but the customers to work slowly. This
should still not affect the order in which the customers are served.

SOLUTION 14.11 You should observe that the waiting line builds up as cus-
tomers enter the bakery, but the clerk should still serve the customers in the correct
order.

SOLUTION 14.12 A two-ball version of Pong would require the following
changes to the original version:

1. AnewBall() constructor that has parameters to set the initial location and
direction of the ball.

2. The PongApplet should create a new Ball instance, start it, and draw it.

EXERCISE 14.1 Explain the difference between the following pairs of terms:

a. Blocked and ready. e. Concurrent and time slicing.
b. Priority and round-robin scheduling. f. Mutual exclusion and critical section.
. Producer and consumer. g. Busy and nonbusy waiting.

d. Monitor and lock.

EXERCISE 14.2 Fill in the blanks.

a. — happens when a CPU’s time is divided among several different
threads.
b. A method that should not be interrupted during its execution is known as a

c. The scheduling algorithm in which each thread gets an equal portion of the
CPU’s time is known as .

d. The scheduling algorithm in which some threads can preempt other threads is
known as .

e. A isamechanism that enforces mutually exclusive access to a syn-

chronized method.
f. A thread that performs an I/O operation may be forced intothe ________ state

until the operation is completed.

EXERCISE 14.3 Describe the concept of time slicing as it applies to CPU
scheduling.

EXERCISE 14.4 What's the difference in the way concurrent threads would be
implemented on a computer with several processors and on a computer with a
single processor?

EXERCISE 14.5 Why are threads put into the blocked state when they perform
an I/O operation?

EXERCISE 14.6 What's the difference between a thread in the sleep state and a
thread in the ready state?

EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

704 CHAPTER 14 o Threads and Concurrent Programming

EXERCISE 14.7 Deadlock is a situation that occurs when one thread is holding
a resource that another thread is waiting for, while the other thread is holding
a resource that the first thread is waiting for. Describe how deadlock can occur
at a four-way intersection with cars entering from each branch. How can it be
avoided?

EXERCISE 14.8 Starvation can occur if one thread is repeatedly preempted by
other threads. Describe how starvation can occur at a four-way intersection and
how it can be avoided.

EXERCISE 14.9 Use the Runnable interface to define a thread that repeatedly
generates random numbers in the interval 2 through 12.

EXERCISE 14.10 Create a version of the Bakery program that uses two clerks
to serve customers.

EXERCISE 14.11 Modify the Numbers program so that the user can in-
teractively create NumberThread s and assign them a priority. Modify the
NumberThread s so that they print their numbers indefinitely (rather than for a
fixed number of iterations). Then experiment with the system by observing the
effect of introducing threads with the same, lower, or higher priority. How do
the threads behave when they all have the same priority? What happens when
you introduce a higher-priority thread into the mix? What happens when you
introduce a lower-priority thread into the mix?

EXERCISE 14.12 Create a bouncing ball simulation in which a single ball
(thread) bounces up and down in a vertical line. The ball should bounce off the
bottom and top of the enclosing frame.

EXERCISE 14.13 Modify the simulation in the previous exercise so that more
than one ball can be introduced. Allow the user to introduce new balls into the
simulation by pressing the space bar or clicking the mouse.

EXERCISE 14.14 Modify your solution to the previous problem by having the
balls bounce off the wall at a random angle.

EXERCISE 14.15 Challenge: One type of producer/consumer problem is the
reader/writer problem. Create a subclass of JTextField that can be shared by
threads, one of which writes a random number to the text field, and the other of
which reads the value in the text field. Coordinate the two threads so that the
overall effect of the program will be to print the values from 0 to 100 in the proper
order. In other words, the reader thread shouldn’t read a value from the text field
until there’s a value to be read. The writer thread shouldn’t write a value to the
text field until the reader has read the previous value.

EXERCISE 14.16 Challenge: Create a streaming banner thread that moves a
simple message across a panel. The message should repeatedly enter at the left
edge of the panel and exit from the right edge. Design the banner as a subclass of
JPanel and have it implement the Runnable interface. That way it can be added
to any user interface. One of its constructors should take a String argument that
lets the user set the banner’s message.

EXERCISE 14.17 Challenge: Create a slide show applet, which repeatedly cy-
cles through an array of images. The action of displaying the images should be a
separate thread. The applet thread should handle the user interface. Give the user
some controls that let it pause, stop, start, speed up, and slow down the images.

EXERCISE 14.18 Challenge: Create a horse race simulation, using separate
threads for each of the horses. The horses should race horizontally across the
screen, with each horse having a different vertical coordinate. If you don’t have
good horse images to use, just make each horse a colored polygon or some other
shape. Have the horses implement the Drawable interface, which we introduced
in Chapter 8.

CHAPTER 14 o Exercises 705

EXERCISE 14.19 Challenge: Create a multithreaded digital clock application.
One thread should keep time in an endless while loop. The other thread should
be responsible for updating the screen each second.

