

23Concurrency

The most general definition of
beauty…Multeity in Unity.
—Samuel Taylor Coleridge

Do not block the way of inquiry.
—Charles Sanders Peirce

Learn to labor and to wait.
—Henry Wadsworth Longfellow

O b j e c t i v e s
In this chapter you’ll:

■ Understand concurrency,
parallelism and
multithreading.

■ Learn the thread life cycle.
■ Use ExecutorService to

launch concurrent threads
that execute Runnables.

■ Use synchronized
methods to coordinate access
to shared mutable data.

■ Understand producer/
consumer relationships.

■ Use SwingWorker to
update Swing GUIs in a
thread-safe manner.

■ Compare the performance of
Arrays methods sort and
parallelSort on a multi-
core system.

■ Use parallel streams for better
performance on multi-core
systems.

■ Use CompletableFutures
to execute long calculations
asynchronously and get the
results in the future.

958 Chapter 23 Concurrency

23.1 Introduction
[Note: Sections marked “Advanced” are intended for readers who wish a deeper treatment of con-
currency and may be skipped by readers preferring only basic coverage.] It would be nice if we
could focus our attention on performing only one task at a time and doing it well. That’s
usually difficult to do in a complex world in which there’s so much going on at once. This
chapter presents Java’s capabilities for developing programs that create and manage multiple
tasks. As we’ll demonstrate, this can greatly improve program performance.

When we say that two tasks are operating concurrently, we mean that they’re both
making progress at once. Until recently, most computers had only a single processor. Oper-
ating systems on such computers execute tasks concurrently by rapidly switching between
them, doing a small portion of each before moving on to the next, so that all tasks keep
progressing. For example, it’s common for personal computers to compile a program, send
a file to a printer, receive electronic mail messages over a network and more, concurrently.
Since its inception, Java has supported concurrency.

When we say that two tasks are operating in parallel, we mean that they’re executing
simultaneously. In this sense, parallelism is a subset of concurrency. The human body per-
forms a great variety of operations in parallel. Respiration, blood circulation, digestion,
thinking and walking, for example, can occur in parallel, as can all the senses—sight,
hearing, touch, smell and taste. It’s believed that this parallelism is possible because the

23.1 Introduction
23.2 Thread States and Life Cycle

23.2.1 New and Runnable States
23.2.2 Waiting State
23.2.3 Timed Waiting State
23.2.4 Blocked State
23.2.5 Terminated State
23.2.6 Operating-System View of the

Runnable State
23.2.7 Thread Priorities and Thread

Scheduling
23.2.8 Indefinite Postponement and

Deadlock
23.3 Creating and Executing Threads with

the Executor Framework
23.4 Thread Synchronization

23.4.1 Immutable Data
23.4.2 Monitors
23.4.3 Unsynchronized Mutable Data

Sharing
23.4.4 Synchronized Mutable Data

Sharing—Making Operations Atomic
23.5 Producer/Consumer Relationship

without Synchronization
23.6 Producer/Consumer Relationship:

ArrayBlockingQueue

23.7 (Advanced) Producer/Consumer
Relationship with synchronized,
wait, notify and notifyAll

23.8 (Advanced) Producer/Consumer
Relationship: Bounded Buffers

23.9 (Advanced) Producer/Consumer
Relationship: The Lock and
Condition Interfaces

23.10 Concurrent Collections
23.11 Multithreading with GUI:

SwingWorker
23.11.1 Performing Computations in a

Worker Thread: Fibonacci Numbers
23.11.2 Processing Intermediate Results: Sieve

of Eratosthenes
23.12 sort/parallelSort Timings with

the Java SE 8 Date/Time API
23.13 Java SE 8: Sequential vs. Parallel

Streams
23.14 (Advanced) Interfaces Callable

and Future
23.15 (Advanced) Fork/Join Framework
23.16 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

23.1 Introduction 959

human brain is thought to contain billions of “processors.” Today’s multi-core computers
have multiple processors that can perform tasks in parallel.

Java Concurrency
Java makes concurrency available to you through the language and APIs. Java programs
can have multiple threads of execution, where each thread has its own method-call stack
and program counter, allowing it to execute concurrently with other threads while sharing
with them application-wide resources such as memory and file handles. This capability is
called multithreading.

Concurrent Programming Uses
We’ll discuss many applications of concurrent programming. For example, when stream-
ing an audio or video over the Internet, the user may not want to wait until the entire au-
dio or video downloads before starting the playback. To solve this problem, multiple
threads can be used—one to download the audio or video (later in the chapter we’ll refer
to this as a producer), and another to play it (later in the chapter we’ll refer to this as a con-
sumer). These activities proceed concurrently. To avoid choppy playback, the threads are
synchronized (that is, their actions are coordinated) so that the player thread doesn’t begin
until there’s a sufficient amount of the audio or video in memory to keep the player thread
busy. Producer and consumer threads share memory—we’ll show how to coordinate these
threads to ensure correct execution. The Java Virtual Machine (JVM) creates threads to
run programs and threads to perform housekeeping tasks such as garbage collection.

Concurrent Programming Is Difficult
Writing multithreaded programs can be tricky. Although the human mind can perform
functions concurrently, people find it difficult to jump between parallel trains of thought.
To see why multithreaded programs can be difficult to write and understand, try the fol-
lowing experiment: Open three books to page 1, and try reading the books concurrently.
Read a few words from the first book, then a few from the second, then a few from the
third, then loop back and read the next few words from the first book, and so on. After
this experiment, you’ll appreciate many of the challenges of multithreading—switching
between the books, reading briefly, remembering your place in each book, moving the
book you’re reading closer so that you can see it and pushing the books you’re not reading
aside—and, amid all this chaos, trying to comprehend the content of the books!

Use the Prebuilt Classes of the Concurrency APIs Whenever Possible
Programming concurrent applications is difficult and error prone. If you must use synchro-
nization in a program, follow these guidelines:

1. The vast majority of programmers should use existing collection classes and interfaces
from the concurrency APIs that manage synchronization for you—such as the Array-

Performance Tip 23.1
A problem with single-threaded applications that can lead to poor responsiveness is that
lengthy activities must complete before others can begin. In a multithreaded application,
threads can be distributed across multiple cores (if available) so that multiple tasks execute
in parallel and the application can operate more efficiently. Multithreading can also increase
performance on single-processor systems—when one thread cannot proceed (because, for ex-
ample, it’s waiting for the result of an I/O operation), another can use the processor.

960 Chapter 23 Concurrency

BlockingQueue class (an implementation of interface BlockingQueue) we discuss in
Section 23.6. Two other concurrency API classes that you’ll use frequently are
LinkedBlockingQueue and ConcurrentHashMap (each summarized in Fig. 23.22).
The concurrency API classes are written by experts, have been thoroughly tested
and debugged, operate efficiently and help you avoid common traps and pitfalls.
Section 23.10 overviews Java’s pre-built concurrent collections.

2. For advanced programmers who want to control synchronization, use the syn-
chronized keyword and Object methods wait, notify and notifyAll, which
we discuss in the optional Section 23.7.

3. Only the most advanced programmers should use Locks and Conditions, which we
introduce in the optional Section 23.9, and classes like LinkedTransferQueue—an
implementation of interface TransferQueue—which we summarize in Fig. 23.22.

You might want to read our discussions of the more advanced features in items 2 and 3
above, even though you most likely will not use them. We explain these because:

• They provide a solid basis for understanding how concurrent applications syn-
chronize access to shared memory.

• By showing you the complexity involved in using these low-level features, we
hope to impress upon you the message: Use the simpler prebuilt concurrency capa-
bilities whenever possible.

23.2 Thread States and Life Cycle
At any time, a thread is said to be in one of several thread states—illustrated in the UML
state diagram in Fig. 23.1. Several of the terms in the diagram are defined in later sections.
We include this discussion to help you understand what’s going on “under the hood” in a
Java multithreaded environment. Java hides most of this detail from you, greatly simplify-
ing the task of developing multithreaded applications.

Fig. 23.1 | Thread life-cycle UML state diagram.

task
com

pletes

acquire lock
i
n
t
e
r
r
u
p
t

I/O
 com

pletesw
a
i
t

s
l
e
e
pno

ti
fy

no
ti
fy
Al
l

wa
it

in
te

rv
al

ex
pi

re
s

n
o
t
i
f
y

n
o
t
i
f
y
A
l
l

runnable

program starts
the thread

new

issue I/O request

enter synchronized

statement

timed waitingwaiting terminated blocked

23.2 Thread States and Life Cycle 961

23.2.1 New and Runnable States
A new thread begins its life cycle in the new state. It remains in this state until the program
starts the thread, which places it in the runnable state. A thread in the runnable state is
considered to be executing its task.

23.2.2 Waiting State
Sometimes a runnable thread transitions to the waiting state while it waits for another
thread to perform a task. A waiting thread transitions back to the runnable state only when
another thread notifies it to continue executing.

23.2.3 Timed Waiting State
A runnable thread can enter the timed waiting state for a specified interval of time. It tran-
sitions back to the runnable state when that time interval expires or when the event it’s
waiting for occurs. Timed waiting threads and waiting threads cannot use a processor, even
if one is available. A runnable thread can transition to the timed waiting state if it provides
an optional wait interval when it’s waiting for another thread to perform a task. Such a
thread returns to the runnable state when it’s notified by another thread or when the timed
interval expires—whichever comes first. Another way to place a thread in the timed waiting
state is to put a runnable thread to sleep—a sleeping thread remains in the timed waiting
state for a designated period of time (called a sleep interval), after which it returns to the
runnable state. Threads sleep when they momentarily do not have work to perform. For
example, a word processor may contain a thread that periodically backs up (i.e., writes a
copy of) the current document to disk for recovery purposes. If the thread did not sleep
between successive backups, it would require a loop in which it continually tested whether
it should write a copy of the document to disk. This loop would consume processor time
without performing productive work, thus reducing system performance. In this case, it’s
more efficient for the thread to specify a sleep interval (equal to the period between suc-
cessive backups) and enter the timed waiting state. This thread is returned to the runnable
state when its sleep interval expires, at which point it writes a copy of the document to disk
and reenters the timed waiting state.

23.2.4 Blocked State
A runnable thread transitions to the blocked state when it attempts to perform a task that
cannot be completed immediately and it must temporarily wait until that task completes.
For example, when a thread issues an input/output request, the operating system blocks
the thread from executing until that I/O request completes—at that point, the blocked
thread transitions to the runnable state, so it can resume execution. A blocked thread can-
not use a processor, even if one is available.

23.2.5 Terminated State
A runnable thread enters the terminated state (sometimes called the dead state) when it
successfully completes its task or otherwise terminates (perhaps due to an error). In the
UML state diagram of Fig. 23.1, the terminated state is followed by the UML final state
(the bull’s-eye symbol) to indicate the end of the state transitions.

962 Chapter 23 Concurrency

23.2.6 Operating-System View of the Runnable State
At the operating system level, Java’s runnable state typically encompasses two separate states
(Fig. 23.2). The operating system hides these states from the Java Virtual Machine (JVM),
which sees only the runnable state. When a thread first transitions to the runnable state from
the new state, it’s in the ready state. A ready thread enters the running state (i.e., begins ex-
ecuting) when the operating system assigns it to a processor—also known as dispatching
the thread. In most operating systems, each thread is given a small amount of processor
time—called a quantum or timeslice—with which to perform its task. Deciding how large
the quantum should be is a key topic in operating systems courses. When its quantum ex-
pires, the thread returns to the ready state, and the operating system assigns another thread
to the processor. Transitions between the ready and running states are handled solely by the
operating system. The JVM does not “see” the transitions—it simply views the thread as
being runnable and leaves it up to the operating system to transition the thread between
ready and running. The process that an operating system uses to determine which thread to
dispatch is called thread scheduling and is dependent on thread priorities.

23.2.7 Thread Priorities and Thread Scheduling
Every Java thread has a thread priority that helps determine the order in which threads are
scheduled. Each new thread inherits the priority of the thread that created it. Informally,
higher-priority threads are more important to a program and should be allocated processor
time before lower-priority threads. Nevertheless, thread priorities cannot guarantee the order
in which threads execute.

It’s recommended that you do not explicitly create and use Thread objects to implement con-
currency, but rather use the Executor interface (which is described in Section 23.3). The Thread
class does contain some useful static methods, which you will use later in the chapter.

Most operating systems support timeslicing, which enables threads of equal priority
to share a processor. Without timeslicing, each thread in a set of equal-priority threads
runs to completion (unless it leaves the runnable state and enters the waiting or timed
waiting state, or gets interrupted by a higher-priority thread) before other threads of equal
priority get a chance to execute. With timeslicing, even if a thread has not finished exe-
cuting when its quantum expires, the processor is taken away from the thread and given
to the next thread of equal priority, if one is available.

An operating system’s thread scheduler determines which thread runs next. One simple
thread-scheduler implementation keeps the highest-priority thread running at all times
and, if there’s more than one highest-priority thread, ensures that all such threads execute
for a quantum each in round-robin fashion. This process continues until all threads run
to completion.

Fig. 23.2 | Operating system’s internal view of Java’s runnable state.

running

runnable

quantum expires

operating system
dispatches a thread

ready

23.3 Creating and Executing Threads with the Executor Framework 963

23.2.8 Indefinite Postponement and Deadlock
When a higher-priority thread enters the ready state, the operating system generally preempts
the currently running thread (an operation known as preemptive scheduling). Depending
on the operating system, a steady influx of higher-priority threads could postpone—possibly
indefinitely—the execution of lower-priority threads. Such indefinite postponement is
sometimes referred to more colorfully as starvation. Operating systems employ a technique
called aging to prevent starvation—as a thread waits in the ready state, the operating system
gradually increases the thread’s priority to ensure that the thread will eventually run.

Another problem related to indefinite postponement is called deadlock. This occurs
when a waiting thread (let’s call this thread1) cannot proceed because it’s waiting (either
directly or indirectly) for another thread (let’s call this thread2) to proceed, while simulta-
neously thread2 cannot proceed because it’s waiting (either directly or indirectly) for
thread1 to proceed. The two threads are waiting for each other, so the actions that would
enable each thread to continue execution can never occur.

23.3 Creating and Executing Threads with the Executor
Framework
This section demonstrates how to perform concurrent tasks in an application by using
Executors and Runnable objects.

Creating Concurrent Tasks with the Runnable Interface
You implement the Runnable interface (of package java.lang) to specify a task that can
execute concurrently with other tasks. The Runnable interface declares the single method
run, which contains the code that defines the task that a Runnable object should perform.

Executing Runnable Objects with an Executor
To allow a Runnable to perform its task, you must execute it. An Executor object executes
Runnables. It does this by creating and managing a group of threads called a thread pool.
When an Executor begins executing a Runnable, the Executor calls the Runnable object’s
run method, which executes in the new thread.

The Executor interface declares a single method named execute which accepts a Run-
nable as an argument. The Executor assigns every Runnable passed to its execute method
to one of the available threads in the thread pool. If there are no available threads, the
Executor creates a new thread or waits for a thread to become available and assigns that
thread the Runnable that was passed to method execute.

Software Engineering Observation 23.1
Java provides higher-level concurrency utilities to hide much of this complexity and make
multithreaded programming less error prone. Thread priorities are used behind the scenes
to interact with the operating system, but most programmers who use Java multithreading
will not be concerned with setting and adjusting thread priorities.

Portability Tip 23.1
Thread scheduling is platform dependent—the behavior of a multithreaded program
could vary across different Java implementations.

964 Chapter 23 Concurrency

Using an Executor has many advantages over creating threads yourself. Executors can
reuse existing threads to eliminate the overhead of creating a new thread for each task and
can improve performance by optimizing the number of threads to ensure that the processor
stays busy, without creating so many threads that the application runs out of resources.

Using Class Executors to Obtain an ExecutorService
The ExecutorService interface (of package java.util.concurrent) extends Executor
and declares various methods for managing the life cycle of an Executor. You obtain an
ExecutorService object by calling one of the static methods declared in class Executors
(of package java.util.concurrent). We use interface ExecutorService and a method of
class Executors in our example, which executes three tasks.

Implementing the Runnable Interface
Class PrintTask (Fig. 23.3) implements Runnable (line 5), so that multiple PrintTasks can
execute concurrently. Variable sleepTime (line 8) stores a random integer value from 0 to
5 seconds created in the PrintTask constructor (line 17). Each thread running a Print-
Task sleeps for the amount of time specified by sleepTime, then outputs its task’s name
and a message indicating that it’s done sleeping.

Software Engineering Observation 23.2
Though it’s possible to create threads explicitly, it’s recommended that you use the
Executor interface to manage the execution of Runnable objects.

1 // Fig. 23.3: PrintTask.java
2 // PrintTask class sleeps for a random time from 0 to 5 seconds
3 import java.security.SecureRandom;
4
5 public class PrintTask
6 {
7 private static final SecureRandom generator = new SecureRandom();
8 private final int sleepTime; // random sleep time for thread
9 private final String taskName;

10
11 // constructor
12 public PrintTask(String taskName)
13 {
14 this.taskName = taskName;
15
16 // pick random sleep time between 0 and 5 seconds
17 sleepTime = generator.nextInt(5000); // milliseconds
18 }
19
20 // method run contains the code that a thread will execute
21
22 {
23 try // put thread to sleep for sleepTime amount of time
24 {
25 System.out.printf("%s going to sleep for %d milliseconds.%n",
26 taskName, sleepTime);

Fig. 23.3 | PrintTask class sleeps for a random time from 0 to 5 seconds. (Part 1 of 2.)

implements Runnable

public void run()

23.3 Creating and Executing Threads with the Executor Framework 965

A PrintTask executes when a thread calls the PrintTask’s run method. Lines 25–26
display a message indicating the name of the currently executing task and that the task is
going to sleep for sleepTime milliseconds. Line 27 invokes static method sleep of class
Thread to place the thread in the timed waiting state for the specified amount of time. At
this point, the thread loses the processor, and the system allows another thread to execute.
When the thread awakens, it reenters the runnable state. When the PrintTask is assigned
to a processor again, line 36 outputs a message indicating that the task is done sleeping,
then method run terminates. The catch at lines 29–33 is required because method sleep
might throw a checked exception of type InterruptedException if a sleeping thread’s
interrupt method is called.

Let the Thread Handle InterruptedExceptions
It’s considered good practice to let the executing thread handle InterruptedExceptions.
Normally, you’d do this by declaring that method run throws the exception, rather than
catching the exception. However, recall from Chapter 11 that when you override a meth-
od, the throws may contain only the same exception types or a subset of the exception
types declared in the original method’s throws clause. Runnable method run does not have
a throws clause in its original declaration, so we cannot provide one in line 21. To ensure
that the executing thread receives the InterruptedException, line 32 first obtains a ref-
erence to the currently executing Thread by calling static method currentThread, then
uses that Thread’s interrupt method to deliver the InterruptedException to the current
thread.1

Using the ExecutorService to Manage Threads that Execute PrintTasks
Figure 23.4 uses an ExecutorService object to manage threads that execute PrintTasks
(as defined in Fig. 23.3). Lines 11–13 create and name three PrintTasks to execute. Line
18 uses Executors method newCachedThreadPool to obtain an ExecutorService that’s
capable of creating new threads as they’re needed by the application. These threads are
used by ExecutorService to execute the Runnables.

27
28 }
29 catch (InterruptedException exception)
30 {
31 exception.printStackTrace();
32 Thread.currentThread().interrupt(); // re-interrupt the thread
33 }
34
35 // print task name
36 System.out.printf("%s done sleeping%n", taskName);
37 }
38 } // end class PrintTask

1. For detailed information on handling thread interruptions, see Chapter 7 of Java Concurrency in
Practice by Brian Goetz, et al., Addison-Wesley Professional, 2006.

Fig. 23.3 | PrintTask class sleeps for a random time from 0 to 5 seconds. (Part 2 of 2.)

Thread.sleep(sleepTime); // put thread to sleep

966 Chapter 23 Concurrency

1 // Fig. 23.4: TaskExecutor.java
2 // Using an ExecutorService to execute Runnables.
3 import java.util.concurrent.Executors;
4 import java.util.concurrent.ExecutorService;
5
6 public class TaskExecutor
7 {
8 public static void main(String[] args)
9 {

10 // create and name each runnable
11 PrintTask task1 = new PrintTask("task1");
12 PrintTask task2 = new PrintTask("task2");
13 PrintTask task3 = new PrintTask("task3");
14
15 System.out.println("Starting Executor");
16
17 // create ExecutorService to manage threads
18
19
20 // start the three PrintTasks
21
22
23
24
25 // shut down ExecutorService--it decides when to shut down threads
26
27
28 System.out.printf("Tasks started, main ends.%n%n");
29 }
30 } // end class TaskExecutor

Starting Executor
Tasks started, main ends

task1 going to sleep for 4806 milliseconds
task2 going to sleep for 2513 milliseconds
task3 going to sleep for 1132 milliseconds
task3 done sleeping
task2 done sleeping
task1 done sleeping

Starting Executor
task1 going to sleep for 3161 milliseconds.
task3 going to sleep for 532 milliseconds.
task2 going to sleep for 3440 milliseconds.
Tasks started, main ends.

task3 done sleeping
task1 done sleeping
task2 done sleeping

Fig. 23.4 | Using an ExecutorService to execute Runnables.

ExecutorService executorService = Executors.newCachedThreadPool();

executorService.execute(task1); // start task1
executorService.execute(task2); // start task2
executorService.execute(task3); // start task3

executorService.shutdown();

23.4 Thread Synchronization 967

Lines 21–23 each invoke the ExecutorService’s execute method, which executes its
Runnable argument (in this case a PrintTask) some time in the future. The specified task
may execute in one of the threads in the ExecutorService’s thread pool, in a new thread
created to execute it, or in the thread that called the execute method—the ExecutorSer-
vice manages these details. Method execute returns immediately from each invocation—
the program does not wait for each PrintTask to finish. Line 26 calls ExecutorService
method shutdown, which notifies the ExecutorService to stop accepting new tasks, but con-
tinues executing tasks that have already been submitted. Once all of the previously submitted
Runnables have completed, the ExecutorService terminates. Line 28 outputs a message
indicating that the tasks were started and the main thread is finishing its execution.

Main Thread
The code in main executes in the main thread, which is created by the JVM. The code in
the run method of PrintTask (lines 21–37 of Fig. 23.3) executes whenever the Executor
starts each PrintTask—again, this is sometime after they’re passed to the ExecutorSer-
vice’s execute method (Fig. 23.4, lines 21–23). When main terminates, the program it-
self continues running because there are still tasks that must finish executing. The program
will not terminate until these tasks complete.

Sample Outputs
The sample outputs show each task’s name and sleep time as the thread goes to sleep. The
thread with the shortest sleep time in most cases awakens first, indicates that it’s done sleep-
ing and terminates. In Section 23.8, we discuss multithreading issues that could prevent
the thread with the shortest sleep time from awakening first. In the first output, the main
thread terminates before any of the PrintTasks output their names and sleep times. This
shows that the main thread runs to completion before any of the PrintTasks gets a chance
to run. In the second output, all of the PrintTasks output their names and sleep times
before the main thread terminates. This shows that the PrintTasks started executing before
the main thread terminated. Also, notice in the second example output, task3 goes to
sleep before task2 last, even though we passed task2 to the ExecutorService’s execute
method before task3. This illustrates the fact that we cannot predict the order in which the
tasks will start executing, even if we know the order in which they were created and started.

Waiting for Previously Scheduled Tasks to Terminate
After scheduling tasks to execute, you’ll typically want to wait for the tasks to complete—for
example, so that you can use the tasks’ results. After calling method shutdown, you can call
ExecutorService method awaitTermination to wait for scheduled tasks to complete. We
demonstrate this in Fig. 23.7. We purposely did not call awaitTermination in Fig. 23.4
to demonstrate that a program can continue executing after the main thread terminates.

23.4 Thread Synchronization
When multiple threads share an object and it’s modified by one or more of them, indeter-
minate results may occur (as we’ll see in the examples) unless access to the shared object is
managed properly. If one thread is in the process of updating a shared object and another
thread also tries to update it, it’s uncertain which thread’s update takes effect. Similarly, if
one thread is in the process of updating a shared object and another thread tries to read it,
it’s uncertain whether the reading thread will see the old value or the new one. In such

968 Chapter 23 Concurrency

cases, the program’s behavior cannot be trusted—sometimes the program will produce the
correct results, and sometimes it won’t, and there won’t be any indication that the shared
object was manipulated incorrectly.

The problem can be solved by giving only one thread at a time exclusive access to code
that accesses the shared object. During that time, other threads desiring to access the object
are kept waiting. When the thread with exclusive access finishes accessing the object, one of
the waiting threads is allowed to proceed. This process, called thread synchronization, coor-
dinates access to shared data by multiple concurrent threads. By synchronizing threads in this
manner, you can ensure that each thread accessing a shared object excludes all other threads
from doing so simultaneously—this is called mutual exclusion.

23.4.1 Immutable Data
Actually, thread synchronization is necessary only for shared mutable data, i.e., data that
may change during its lifetime. With shared immutable data that will not change, it’s not
possible for a thread to see old or incorrect values as a result of another thread’s manipu-
lation of that data.

When you share immutable data across threads, declare the corresponding data fields
final to indicate that the values of the variables will not change after they’re initialized.
This prevents accidental modification of the shared data, which could compromise thread
safety. Labeling object references as final indicates that the reference will not change, but it
does not guarantee that the referenced object is immutable—this depends entirely on the object’s
properties. However, it’s still good practice to mark references that will not change as
final.

23.4.2 Monitors
A common way to perform synchronization is to use Java’s built-in monitors. Every object
has a monitor and a monitor lock (or intrinsic lock). The monitor ensures that its object’s
monitor lock is held by a maximum of only one thread at any time. Monitors and monitor
locks can thus be used to enforce mutual exclusion. If an operation requires the executing
thread to hold a lock while the operation is performed, a thread must acquire the lock before
proceeding with the operation. Other threads attempting to perform an operation that re-
quires the same lock will be blocked until the first thread releases the lock, at which point
the blocked threads may attempt to acquire the lock and proceed with the operation.

To specify that a thread must hold a monitor lock to execute a block of code, the code
should be placed in a synchronized statement. Such code is said to be guarded by the
monitor lock; a thread must acquire the lock to execute the guarded statements. The mon-
itor allows only one thread at a time to execute statements within synchronized state-
ments that lock on the same object, as only one thread at a time can hold the monitor lock.
The synchronized statements are declared using the synchronized keyword:

Software Engineering Observation 23.3
Always declare data fields that you do not expect to change as final. Primitive variables that
are declared as final can safely be shared across threads. An object reference that’s declared
as final ensures that the object it refers to will be fully constructed and initialized before it’s
used by the program, and prevents the reference from pointing to another object.

23.4 Thread Synchronization 969

where object is the object whose monitor lock will be acquired; object is normally this if
it’s the object in which the synchronized statement appears. If several synchronized
statements in different threads are trying to execute on an object at the same time, only
one of them may be active on the object—all the other threads attempting to enter a syn-
chronized statement on the same object are placed in the blocked state.

When a synchronized statement finishes executing, the object’s monitor lock is
released and one of the blocked threads attempting to enter a synchronized statement can
be allowed to acquire the lock to proceed. Java also allows synchronized methods. Before
executing, a synchronized instance method must acquire the lock on the object that’s
used to call the method. Similarly, a static synchronized method must acquire the lock
on the class that’s used to call the method.

23.4.3 Unsynchronized Mutable Data Sharing
First, we illustrate the dangers of sharing an object across threads without proper synchro-
nization. In this example (Figs. 23.5–23.7), two Runnables maintain references to a single
integer array. Each Runnable writes three values to the array, then terminates. This may
seem harmless, but we’ll see that it can result in errors if the array is manipulated without
synchronization.

Class SimpleArray
A SimpleArray object (Fig. 23.5) will be shared across multiple threads. SimpleArray will
enable those threads to place int values into array (declared at line 9). Line 10 initializes
variable writeIndex, which will be used to determine the array element that should be
written to next. The constructor (lines 13–16) creates an integer array of the desired size.

synchronized (object)
{
 statements
}

Software Engineering Observation 23.4
Using a synchronized block to enforce mutual exclusion is an example of the design
pattern known as the Java Monitor Pattern (see section 4.2.1 of Java Concurrency in
Practice by Brian Goetz, et al., Addison-Wesley Professional, 2006).

1 // Fig. 23.5: SimpleArray.java
2 // Class that manages an integer array to be shared by multiple threads.
3 import java.security.SecureRandom;
4 import java.util.Arrays;
5
6 public class SimpleArray // CAUTION: NOT THREAD SAFE!
7 {
8 private static final SecureRandom generator = new SecureRandom();
9 private final int[] array; // the shared integer array

10 private int writeIndex = 0; // shared index of next element to write
11

Fig. 23.5 | Class that manages an integer array to be shared by multiple threads. (Caution: The
example of Figs. 23.5–23.7 is not thread safe.) (Part 1 of 2.)

970 Chapter 23 Concurrency

Method add (lines 19–40) allows new values to be inserted at the end of the array.
Line 21 stores the current writeIndex value. Line 26 puts the thread that invokes add to
sleep for a random interval from 0 to 499 milliseconds. This is done to make the problems
associated with unsynchronized access to shared mutable data more obvious. After the thread
is done sleeping, line 34 inserts the value passed to add into the array at the element spec-
ified by position. Lines 35–36 output a message indicating the executing thread’s name,
the value that was inserted in the array and where it was inserted. The expression
Thread.currentThread().getName() (line 36) first obtains a reference to the currently
executing Thread, then uses that Thread’s getName method to obtain its name. Line 38
increments writeIndex so that the next call to add will insert a value in the array’s next
element. Lines 43–46 override method toString to create a String representation of the
array’s contents.

12 // construct a SimpleArray of a given size
13 public SimpleArray(int size)
14 {
15 array = new int[size];
16 }
17
18 // add a value to the shared array
19 public void add(int value)
20 {
21
22
23 try
24 {
25 // put thread to sleep for 0-499 milliseconds
26 Thread.sleep(generator.nextInt(500));
27 }
28 catch (InterruptedException ex)
29 {
30 Thread.currentThread().interrupt(); // re-interrupt the thread
31 }
32
33
34
35 System.out.printf("%s wrote %2d to element %d.%n",
36 Thread.currentThread().getName(), value, position);
37
38
39 System.out.printf("Next write index: %d%n", writeIndex);
40 }
41
42 // used for outputting the contents of the shared integer array
43 public String toString()
44 {
45 return Arrays.toString(array);
46 }
47 } // end class SimpleArray

Fig. 23.5 | Class that manages an integer array to be shared by multiple threads. (Caution: The
example of Figs. 23.5–23.7 is not thread safe.) (Part 2 of 2.)

int position = writeIndex; // store the write index

// put value in the appropriate element
array[position] = value;

++writeIndex; // increment index of element to be written next

23.4 Thread Synchronization 971

Class ArrayWriter
Class ArrayWriter (Fig. 23.6) implements the interface Runnable to define a task for in-
serting values in a SimpleArray object. The constructor (lines 10–14) takes two argu-
ments—an integer value, which is the first value this task will insert in the SimpleArray
object, and a reference to the SimpleArray object. Line 20 invokes method add on the
SimpleArray object. The task completes after three consecutive integers beginning with
startValue are inserted in the SimpleArray object.

Class SharedArrayTest
Class SharedArrayTest (Fig. 23.7) executes two ArrayWriter tasks that add values to a
single SimpleArray object. Line 12 constructs a six-element SimpleArray object. Lines
15–16 create two new ArrayWriter tasks, one that places the values 1–3 in the Simple-
Array object, and one that places the values 11–13. Lines 19–21 create an ExecutorSer-
vice and execute the two ArrayWriters. Line 23 invokes the ExecutorService’s
shutDown method to prevent additional tasks from starting and to enable the application to
terminate when the currently executing tasks complete execution.

1 // Fig. 23.6: ArrayWriter.java
2 // Adds integers to an array shared with other Runnables
3 import java.lang.Runnable;
4
5 public class ArrayWriter implements Runnable
6 {
7 private final SimpleArray sharedSimpleArray;
8 private final int startValue;
9

10 public ArrayWriter(int value, SimpleArray array)
11 {
12 startValue = value;
13 sharedSimpleArray = array;
14 }
15
16 public void run()
17 {
18 for (int i = startValue; i < startValue + 3; i++)
19 {
20 sharedSimpleArray.add(i); // add an element to the shared array
21 }
22 }
23 } // end class ArrayWriter

Fig. 23.6 | Adds integers to an array shared with other Runnables. (Caution: The example of
Figs. 23.5–23.7 is not thread safe.)

1 // Fig. 23.7: SharedArrayTest.java
2 // Executing two Runnables to add elements to a shared SimpleArray.
3 import java.util.concurrent.Executors;

Fig. 23.7 | Executing two Runnables to add elements to a shared array. (Caution: The example
of Figs. 23.5–23.7 is not thread safe.) (Part 1 of 3.)

972 Chapter 23 Concurrency

4 import java.util.concurrent.ExecutorService;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedArrayTest
8 {
9 public static void main(String[] arg)

10 {
11 // construct the shared object
12 SimpleArray sharedSimpleArray = new SimpleArray(6);
13
14 // create two tasks to write to the shared SimpleArray
15 ArrayWriter writer1 = new ArrayWriter(1, sharedSimpleArray);
16 ArrayWriter writer2 = new ArrayWriter(11, sharedSimpleArray);
17
18 // execute the tasks with an ExecutorService
19 ExecutorService executorService = Executors.newCachedThreadPool();
20 executorService.execute(writer1);
21 executorService.execute(writer2);
22
23 executorService.shutdown();
24
25 try
26 {
27 // wait 1 minute for both writers to finish executing
28
29
30
31 if (tasksEnded)
32 {
33 System.out.printf("%nContents of SimpleArray:%n");
34 System.out.println(sharedSimpleArray); // print contents
35 }
36 else
37 System.out.println(
38 "Timed out while waiting for tasks to finish.");
39 }
40 catch (InterruptedException ex)
41 {
42 ex.printStackTrace();
43 }
44 } // end main
45 } // end class SharedArrayTest

Next write index: 1
pool-1-thread-1 wrote 2 to element 1.
Next write index: 2
pool-1-thread-1 wrote 3 to element 2.
Next write index: 3

Next write index: 4

Fig. 23.7 | Executing two Runnables to add elements to a shared array. (Caution: The example
of Figs. 23.5–23.7 is not thread safe.) (Part 2 of 3.)

boolean tasksEnded =
 executorService.awaitTermination(1, TimeUnit.MINUTES);

pool-1-thread-1 wrote 1 to element 0.

First pool-1-thread-1 wrote the value
1 to element 0. Later pool-1-thread-2
wrote the value 11 to element 0, thus
overwriting the previously stored value.

pool-1-thread-2 wrote 11 to element 0.

23.4 Thread Synchronization 973

ExecutorService Method awaitTermination
Recall that ExecutorService method shutdown returns immediately. Thus any code that
appears after the call to ExecutorService method shutdown in line 23 will continue exe-
cuting as long as the main thread is still assigned to a processor. We’d like to output the Sim-
pleArray object to show you the results after the threads complete their tasks. So, we need
the program to wait for the threads to complete before main outputs the SimpleArray ob-
ject’s contents. Interface ExecutorService provides the awaitTermination method for
this purpose. This method returns control to its caller either when all tasks executing in
the ExecutorService complete or when the specified timeout elapses. If all tasks are com-
pleted before awaitTermination times out, this method returns true; otherwise it returns
false. The two arguments to awaitTermination represent a timeout value and a unit of
measure specified with a constant from class TimeUnit (in this case, TimeUnit.MINUTES).

Method awaitTermination throws an InterruptedException if the calling thread is
interrupted while waiting for other threads to terminate. Because we catch this exception
in the application’s main method, there’s no need to re-interrupt the main thread as this
program will terminate as soon as main terminates.

In this example, if both tasks complete before awaitTermination times out, line 34
displays the SimpleArray object’s contents. Otherwise, lines 37–38 display a message indi-
cating that the tasks did not finish executing before awaitTermination timed out.

Sample Program Output
Figure 23.7’s output shows the problems (highlighted in the output) that can be caused by
failure to synchronize access to shared mutable data. The value 1 was written to element 0, then
overwritten later by the value 11. Also, when writeIndex was incremented to 3, nothing was
written to that element, as indicated by the 0 in that element of the printed array.

Recall that we added calls to Thread method sleep between operations on the shared
mutable data to emphasize the unpredictability of thread scheduling and increase the likeli-
hood of producing erroneous output. Even if these operations were allowed to proceed at
their normal pace, you could still see errors in the program’s output. However, modern
processors can handle the simple operations of the SimpleArray method add so quickly
that you might not see the errors caused by the two threads executing this method concur-
rently, even if you tested the program dozens of times. One of the challenges of multi-
threaded programming is spotting the errors—they may occur so infrequently and unpredictably
that a broken program does not produce incorrect results during testing, creating the illusion that
the program is correct. This is all the more reason to use predefined collections that handle
the synchronization for you.

pool-1-thread-2 wrote 12 to element 4.
Next write index: 5
pool-1-thread-2 wrote 13 to element 5.
Next write index: 6

Contents of SimpleArray:
[11, 2, 3, 0, 12, 13]

Fig. 23.7 | Executing two Runnables to add elements to a shared array. (Caution: The example
of Figs. 23.5–23.7 is not thread safe.) (Part 3 of 3.)

974 Chapter 23 Concurrency

23.4.4 Synchronized Mutable Data Sharing—Making Operations
Atomic
The output errors of Fig. 23.7 can be attributed to the fact that the shared object, Simple-
Array, is not thread safe—SimpleArray is susceptible to errors if it’s accessed concurrently
by multiple threads. The problem lies in method add, which stores the value of writeIndex,
places a new value in that element, then increments writeIndex. Such a method would
present no problem in a single-threaded program. However, if one thread obtains the value
of writeIndex, there’s no guarantee that another thread cannot come along and increment
writeIndex before the first thread has had a chance to place a value in the array. If this hap-
pens, the first thread will be writing to the array based on a stale value of writeIndex—a
value that’s no longer valid. Another possibility is that one thread might obtain the value
of writeIndex after another thread adds an element to the array but before writeIndex is
incremented. In this case, too, the first thread would write to the array based on an invalid
value for writeIndex.

SimpleArray is not thread safe because it allows any number of threads to read and modify
shared mutable data concurrently, which can cause errors. To make SimpleArray thread safe,
we must ensure that no two threads can access its shared mutable data at the same time.
While one thread is in the process of storing writeIndex, adding a value to the array, and
incrementing writeIndex, no other thread may read or change the value of writeIndex or
modify the contents of the array at any point during these three operations. In other words,
we want these three operations—storing writeIndex, writing to the array, incrementing
writeIndex—to be an atomic operation, which cannot be divided into smaller subopera-
tions. (As you’ll see in later examples, read operations on shared mutable data should also be
atomic.) We can simulate atomicity by ensuring that only one thread carries out the three
operations at a time. Any other threads that need to perform the operation must wait until
the first thread has finished the add operation in its entirety.

Atomicity can be achieved using the synchronized keyword. By placing our three
suboperations in a synchronized statement or synchronized method, we allow only one
thread at a time to acquire the lock and perform the operations. When that thread has
completed all of the operations in the synchronized block and releases the lock, another
thread may acquire the lock and begin executing the operations. This ensures that a thread
executing the operations will see the actual values of the shared mutable data and that these
values will not change unexpectedly in the middle of the operations as a result of another thread’s
modifying them.

Class SimpleArray with Synchronization
Figure 23.8 displays class SimpleArray with the proper synchronization. Notice that it’s
identical to the SimpleArray class of Fig. 23.5, except that add is now a synchronized
method (line 20). So, only one thread at a time can execute this method. We reuse classes
ArrayWriter (Fig. 23.6) and SharedArrayTest (Fig. 23.7) from the previous example.

Software Engineering Observation 23.5
Place all accesses to mutable data that may be shared by multiple threads inside
synchronized statements or synchronized methods that synchronize on the same lock.
When performing multiple operations on shared mutable data, hold the lock for the
entirety of the operation to ensure that the operation is effectively atomic.

23.4 Thread Synchronization 975

1 // Fig. 23.8: SimpleArray.java
2 // Class that manages an integer array to be shared by multiple
3 // threads with synchronization.
4 import java.security.SecureRandom;
5 import java.util.Arrays;
6
7 public class SimpleArray
8 {
9 private static final SecureRandom generator = new SecureRandom();

10 private final int[] array; // the shared integer array
11 private int writeIndex = 0; // index of next element to be written
12
13 // construct a SimpleArray of a given size
14 public SimpleArray(int size)
15 {
16 array = new int[size];
17 }
18
19 // add a value to the shared array
20
21 {
22 int position = writeIndex; // store the write index
23
24 try
25 {
26 // in real applications, you shouldn't sleep while holding a lock
27 Thread.sleep(generator.nextInt(500)); // for demo only
28 }
29 catch (InterruptedException ex)
30 {
31 Thread.currentThread().interrupt();
32 }
33
34 // put value in the appropriate element
35 array[position] = value;
36 System.out.printf("%s wrote %2d to element %d.%n",
37 Thread.currentThread().getName(), value, position);
38
39 ++writeIndex; // increment index of element to be written next
40 System.out.printf("Next write index: %d%n", writeIndex);
41 }
42
43 // used for outputting the contents of the shared integer array
44 public synchronized String toString()
45 {
46 return Arrays.toString(array);
47 }
48 } // end class SimpleArray

Fig. 23.8 | Class that manages an integer array to be shared by multiple threads with
synchronization. (Part 1 of 2.)

public synchronized void add(int value)

976 Chapter 23 Concurrency

Line 20 declares method add as synchronized, making all of the operations in this
method behave as a single, atomic operation. Line 22 performs the first suboperation—
storing the value of writeIndex. Line 35 defines the second suboperation, writing an ele-
ment to the element at the index position. Line 39 increments writeIndex. When the
method finishes executing at line 41, the executing thread implicitly releases the Simple-
Array lock, making it possible for another thread to begin executing the add method.

In the synchronized add method, we print messages to the console indicating the
progress of threads as they execute this method, in addition to performing the actual oper-
ations required to insert a value in the array. We do this so that the messages will be printed
in the correct order, allowing us to see whether the method is properly synchronized by
comparing these outputs with those of the previous, unsynchronized example. We con-
tinue to output messages from synchronized blocks in later examples for demonstration
purposes only; typically, however, I/O should not be performed in synchronized blocks,
because it’s important to minimize the amount of time that an object is “locked.” [Note:
Line 27 in this example calls Thread method sleep (for demo purposes only) to empha-
size the unpredictability of thread scheduling. You should never call sleep while
holding a lock in a real application.]

23.5 Producer/Consumer Relationship without
Synchronization
In a producer/consumer relationship, the producer portion of an application generates
data and stores it in a shared object, and the consumer portion of the application reads data

pool-1-thread-1 wrote 1 to element 0.
Next write index: 1
pool-1-thread-2 wrote 11 to element 1.
Next write index: 2
pool-1-thread-2 wrote 12 to element 2.
Next write index: 3
pool-1-thread-2 wrote 13 to element 3.
Next write index: 4
pool-1-thread-1 wrote 2 to element 4.
Next write index: 5
pool-1-thread-1 wrote 3 to element 5.
Next write index: 6

Contents of SimpleArray:
[1, 11, 12, 13, 2, 3]

Performance Tip 23.2
Keep the duration of synchronized statements as short as possible while maintaining the
needed synchronization. This minimizes the wait time for blocked threads. Avoid per-
forming I/O, lengthy calculations and operations that do not require synchronization
while holding a lock.

Fig. 23.8 | Class that manages an integer array to be shared by multiple threads with
synchronization. (Part 2 of 2.)

23.5 Producer/Consumer Relationship without Synchronization 977

from the shared object. The producer/consumer relationship separates the task of identify-
ing work to be done from the tasks involved in actually carrying out the work.

Examples of Producer/Consumer Relationship
One example of a common producer/consumer relationship is print spooling. Although
a printer might not be available when you want to print from an application (i.e., the pro-
ducer), you can still “complete” the print task, as the data is temporarily placed on disk
until the printer becomes available. Similarly, when the printer (i.e., a consumer) is avail-
able, it doesn’t have to wait until a current user wants to print. The spooled print jobs can
be printed as soon as the printer becomes available. Another example of the producer/con-
sumer relationship is an application that copies data onto DVDs by placing data in a fixed-
size buffer, which is emptied as the DVD drive “burns” the data onto the DVD.

Synchronization and State Dependence
In a multithreaded producer/consumer relationship, a producer thread generates data and
places it in a shared object called a buffer. A consumer thread reads data from the buffer.
This relationship requires synchronization to ensure that values are produced and con-
sumed properly. All operations on mutable data that’s shared by multiple threads (e.g., the
data in the buffer) must be guarded with a lock to prevent corruption, as discussed in
Section 23.4. Operations on the buffer data shared by a producer and consumer thread are
also state dependent—the operations should proceed only if the buffer is in the correct
state. If the buffer is in a not-full state, the producer may produce; if the buffer is in a not-
empty state, the consumer may consume. All operations that access the buffer must use syn-
chronization to ensure that data is written to the buffer or read from the buffer only if the
buffer is in the proper state. If the producer attempting to put the next data into the buffer
determines that it’s full, the producer thread must wait until there’s space to write a new
value. If a consumer thread finds the buffer empty or finds that the previous data has al-
ready been read, the consumer must also wait for new data to become available. Other ex-
amples of state dependence are that you can’t drive your car if its gas tank is empty and
you can’t put more gas into the tank if it’s already full.

Logic Errors from Lack of Synchronization
Consider how logic errors can arise if we do not synchronize access among multiple
threads manipulating shared mutable data. Our next example (Figs. 23.9–23.13) imple-
ments a producer/consumer relationship without the proper synchronization. A producer
thread writes the numbers 1 through 10 into a shared buffer—a single memory location
shared between two threads (a single int variable called buffer in line 6 of Fig. 23.12 in
this example). The consumer thread reads this data from the shared buffer and displays the
data. The program’s output shows the values that the producer writes (produces) into the
shared buffer and the values that the consumer reads (consumes) from the shared buffer.

Each value the producer thread writes to the shared buffer must be consumed exactly
once by the consumer thread. However, the threads in this example are not synchronized.
Therefore, data can be lost or garbled if the producer places new data into the shared buffer
before the consumer reads the previous data. Also, data can be incorrectly duplicated if the
consumer consumes data again before the producer produces the next value. To show
these possibilities, the consumer thread in the following example keeps a total of all the
values it reads. The producer thread produces values from 1 through 10. If the consumer

978 Chapter 23 Concurrency

reads each value produced once and only once, the total will be 55. However, if you exe-
cute this program several times, you’ll see that the total is not always 55 (as shown in the
outputs in Fig. 23.13). To emphasize the point, the producer and consumer threads in the
example each sleep for random intervals of up to three seconds between performing their
tasks. Thus, we do not know when the producer thread will attempt to write a new value,
or when the consumer thread will attempt to read a value.

Interface Buffer
The program consists of interface Buffer (Fig. 23.9) and classes Producer (Fig. 23.10),
Consumer (Fig. 23.11), UnsynchronizedBuffer (Fig. 23.12) and SharedBufferTest
(Fig. 23.13). Interface Buffer (Fig. 23.9) declares methods blockingPut (line 6) and
blockingGet (line 9) that a Buffer (such as UnsynchronizedBuffer) must implement to
enable the Producer thread to place a value in the Buffer and the Consumer thread to re-
trieve a value from the Buffer, respectively. In subsequent examples, methods blocking-
Put and blockingGet will call methods that throw InterruptedExceptions—typically
this indicates that a method temporarily could be blocked from performing a task. We de-
clare each method with a throws clause here so that we don’t have to modify this interface
for the later examples.

Class Producer
Class Producer (Fig. 23.10) implements the Runnable interface, allowing it to be executed
as a task in a separate thread. The constructor (lines 11–14) initializes the Buffer reference
sharedLocation with an object created in main (line 15 of Fig. 23.13) and passed to the con-
structor. As we’ll see, this is an UnsynchronizedBuffer object that implements interface
Buffer without synchronizing access to the shared object. The Producer thread in this program
executes the tasks specified in the method run (Fig. 23.10, lines 17–39). Each iteration of
the loop (lines 21–35) invokes Thread method sleep (line 25) to place the Producer thread
into the timed waiting state for a random time interval between 0 and 3 seconds. When the
thread awakens, line 26 passes the value of control variable count to the Buffer object’s
blockingPut method to set the shared buffer’s value. Lines 27–28 keep a total of all the val-
ues produced so far and output that value. When the loop completes, lines 36–37 display a
message indicating that the Producer has finished producing data and is terminating. Next,
method run terminates, which indicates that the Producer completed its task. Any method
called from a Runnable’s run method (e.g., Buffer method blockingPut) executes as part

1 // Fig. 23.9: Buffer.java
2 // Buffer interface specifies methods called by Producer and Consumer.
3 public interface Buffer
4 {
5 // place int value into Buffer
6 public void blockingPut(int value) throws InterruptedException;
7
8 // return int value from Buffer
9 public int blockingGet() throws InterruptedException;

10 } // end interface Buffer

Fig. 23.9 | Buffer interface specifies methods called by Producer and Consumer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.)

23.5 Producer/Consumer Relationship without Synchronization 979

of that task’s thread of execution. This fact becomes important in Sections 23.6–23.8 when
we add synchronization to the producer/consumer relationship.

Class Consumer
Class Consumer (Fig. 23.11) also implements interface Runnable, allowing the Consumer
to execute concurrently with the Producer. Lines 11–14 initialize Buffer reference
sharedLocation with an object that implements the Buffer interface (created in main,
Fig. 23.13) and passed to the constructor as the parameter shared. As we’ll see, this is the
same UnsynchronizedBuffer object that’s used to initialize the Producer object—thus,

1 // Fig. 23.10: Producer.java
2 // Producer with a run method that inserts the values 1 to 10 in buffer.
3 import java.security.SecureRandom;
4
5
6 {
7 private static final SecureRandom generator = new SecureRandom();
8 private final Buffer sharedLocation; // reference to shared object
9

10 // constructor
11 public Producer(Buffer sharedLocation)
12 {
13 this.sharedLocation = sharedLocation;
14 }
15
16
17
18 {
19 int sum = 0;
20
21 for (int count = 1; count <= 10; count++)
22 {
23 try // sleep 0 to 3 seconds, then place value in Buffer
24 {
25
26
27 sum += count; // increment sum of values
28 System.out.printf("\t%2d%n", sum);
29 }
30 catch (InterruptedException exception)
31 {
32 Thread.currentThread().interrupt();
33 }
34 }
35
36 System.out.printf(
37 "Producer done producing%nTerminating Producer%n");
38 }
39 } // end class Producer

Fig. 23.10 | Producer with a run method that inserts the values 1 to 10 in buffer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.)

public class Producer implements Runnable

// store values from 1 to 10 in sharedLocation
public void run()

Thread.sleep(generator.nextInt(3000)); // random sleep
sharedLocation.blockingPut(count); // set value in buffer

980 Chapter 23 Concurrency

the two threads share the same object. The Consumer thread in this program performs the
tasks specified in method run (lines 17–39). Lines 21–34 iterate 10 times. Each iteration
invokes Thread method sleep (line 26) to put the Consumer thread into the timed waiting
state for up to 3 seconds. Next, line 27 uses the Buffer’s blockingGet method to retrieve
the value in the shared buffer, then adds the value to variable sum. Line 28 displays the
total of all the values consumed so far. When the loop completes, lines 36–37 display a
line indicating the sum of the consumed values. Then method run terminates, which in-
dicates that the Consumer completed its task. Once both threads enter the terminated state,
the program ends.

1 // Fig. 23.11: Consumer.java
2 // Consumer with a run method that loops, reading 10 values from buffer.
3 import java.security.SecureRandom;
4
5
6 {
7 private static final SecureRandom generator = new SecureRandom();
8 private final Buffer sharedLocation; // reference to shared object
9

10 // constructor
11 public Consumer(Buffer sharedLocation)
12 {
13 this.sharedLocation = sharedLocation;
14 }
15
16
17
18 {
19 int sum = 0;
20
21 for (int count = 1; count <= 10; count++)
22 {
23 // sleep 0 to 3 seconds, read value from buffer and add to sum
24 try
25 {
26
27
28 System.out.printf("\t\t\t%2d%n", sum);
29 }
30 catch (InterruptedException exception)
31 {
32 Thread.currentThread().interrupt();
33 }
34 }
35
36 System.out.printf("%n%s %d%n%s%n",
37 "Consumer read values totaling", sum, "Terminating Consumer");
38 }
39 } // end class Consumer

Fig. 23.11 | Consumer with a run method that loops, reading 10 values from buffer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.)

public class Consumer implements Runnable

// read sharedLocation's value 10 times and sum the values
public void run()

Thread.sleep(generator.nextInt(3000));
sum += sharedLocation.blockingGet();

23.5 Producer/Consumer Relationship without Synchronization 981

We Call Thread Method sleep Only for Demonstration Purposes
We call method sleep in method run of the Producer and Consumer classes to emphasize
the fact that, in multithreaded applications, it’s unpredictable when each thread will perform
its task and for how long it will perform the task when it has a processor. Normally, these
thread scheduling issues are beyond the control of the Java developer. In this program, our
thread’s tasks are quite simple—the Producer writes the values 1 to 10 to the buffer, and
the Consumer reads 10 values from the buffer and adds each value to variable sum. Without
the sleep method call, and if the Producer executes first, given today’s phenomenally fast
processors, the Producer would likely complete its task before the Consumer got a chance
to execute. If the Consumer executed first, it would likely consume garbage data ten times,
then terminate before the Producer could produce the first real value.

Class UnsynchronizedBuffer Does Not Synchronize Access to the Buffer
Class UnsynchronizedBuffer (Fig. 23.12) implements interface Buffer (line 4), but does
not synchronize access to the buffer’s state—we purposely do this to demonstrate the prob-
lems that occur when multiple threads access shared mutable data in without synchroniza-
tion. Line 6 declares instance variable buffer and initializes it to –1. This value is used to
demonstrate the case in which the Consumer attempts to consume a value before the Pro-
ducer ever places a value in buffer. Again, methods blockingPut (lines 9–13) and block-
ingGet (lines 16–20) do not synchronize access to the buffer instance variable. Method
blockingPut simply assigns its argument to buffer (line 12), and method blockingGet
simply returns the value of buffer (line 19). As you’ll see in Fig. 23.13, Unsynchronized-
Buffer object is shared between the Producer and the Consumer.

1 // Fig. 23.12: UnsynchronizedBuffer.java
2 // UnsynchronizedBuffer maintains the shared integer that is accessed by
3 // a producer thread and a consumer thread.
4 public class UnsynchronizedBuffer implements Buffer
5 {
6
7
8 // place value into buffer
9 public void blockingPut(int value) throws InterruptedException

10 {
11 System.out.printf("Producer writes\t%2d", value);
12
13 }
14
15 // return value from buffer
16 public int blockingGet() throws InterruptedException
17 {
18 System.out.printf("Consumer reads\t%2d", buffer);
19
20 }
21 } // end class UnsynchronizedBuffer

Fig. 23.12 | UnsynchronizedBuffer maintains the shared integer that is accessed by a producer
thread and a consumer thread. (Caution: The example of Fig. 23.9–Fig. 23.13 is not thread safe.)

private int buffer = -1; // shared by producer and consumer threads

buffer = value;

return buffer;

982 Chapter 23 Concurrency

Class SharedBufferTest
In class SharedBufferTest (Fig. 23.13), line 12 creates an ExecutorService to execute
the Producer and Consumer Runnables. Line 15 creates an UnsynchronizedBuffer and as-
signs it to Buffer variable sharedLocation. This object stores the data that the Producer
and Consumer threads will share. Lines 24–25 create and execute the Producer and Con-
sumer. The Producer and Consumer constructors are each passed the same Buffer object
(sharedLocation), so each object refers to the same Buffer. These lines also implicitly
launch the threads and call each Runnable’s run method. Finally, line 27 calls method
shutdown so that the application can terminate when the threads executing the Producer
and Consumer complete their tasks and line 28 waits for the scheduled tasks to complete.
When main terminates (line 29), the main thread of execution enters the terminated state.

1 // Fig. 23.13: SharedBufferTest.java
2 // Application with two threads manipulating an unsynchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedBufferTest
8 {
9 public static void main(String[] args) throws InterruptedException

10 {
11 // create new thread pool with two threads
12 ExecutorService executorService = Executors.newCachedThreadPool();
13
14
15
16
17 System.out.println(
18 "Action\t\tValue\tSum of Produced\tSum of Consumed");
19 System.out.printf(
20 "------\t\t-----\t---------------\t---------------%n%n");
21
22 // execute the Producer and Consumer, giving each
23 // access to the sharedLocation
24
25
26
27 executorService.shutdown(); // terminate app when tasks complete
28 executorService.awaitTermination(1, TimeUnit.MINUTES);
29 }
30 } // end class SharedBufferTest

Action Value Sum of Produced Sum of Consumed
------ ----- --------------- ---------------

Producer writes 1 1

Fig. 23.13 | Application with two threads manipulating an unsynchronized buffer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.) (Part 1 of 2.)

// create UnsynchronizedBuffer to store ints
Buffer sharedLocation = new UnsynchronizedBuffer();

executorService.execute(new Producer(sharedLocation));
executorService.execute(new Consumer(sharedLocation));

Producer writes 2 3 1 is lost
2 is lostProducer writes 3 6

23.5 Producer/Consumer Relationship without Synchronization 983

Consumer reads 3 3
Producer writes 4 10
Consumer reads 4 7
Producer writes 5 15

Consumer reads 7 14

Producer writes 8 36
Consumer reads 8 29

Producer writes 9 45

Producer done producing
Terminating Producer
Consumer reads 10 47

Consumer read values totaling 77
Terminating Consumer

Action Value Sum of Produced Sum of Consumed
------ ----- --------------- ---------------

Producer writes 1 1
Consumer reads 1 0

Producer writes 2 3
Consumer reads 2 6
Producer writes 3 6
Consumer reads 3 9
Producer writes 4 10
Consumer reads 4 13
Producer writes 5 15

Consumer reads 6 19

Consumer read values totaling 19
Terminating Consumer

Producer done producing
Terminating Producer

Fig. 23.13 | Application with two threads manipulating an unsynchronized buffer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.) (Part 2 of 2.)

5 is lost
6 is lost

7 read again

8 read again

9 is lost

10 read again
10 read again
10 read again

Producer writes 6 21
Producer writes 7 28

Consumer reads 7 21

Consumer reads 8 37

Producer writes 10 55

Consumer reads 10 57
Consumer reads 10 67
Consumer reads 10 77

Consumer reads -1 -1 reads -1 bad data

1 read again
1 read again
1 read again
1 read again

10 never read

5 is lost

7 never read
8 never read
9 never read

Consumer reads 1 1
Consumer reads 1 2
Consumer reads 1 3
Consumer reads 1 4

Producer writes 6 21

Producer writes 7 28
Producer writes 8 36
Producer writes 9 45
Producer writes 10 55

984 Chapter 23 Concurrency

Recall from this example’s overview that the Producer should execute first and every
value produced by the Producer should be consumed exactly once by the Consumer. How-
ever, when you study the first output of Fig. 23.13, notice that the Producer writes the
values 1, 2 and 3 before the Consumer reads its first value (3). Therefore, the values 1 and 2
are lost. Later, the values 5, 6 and 9 are lost, while 7 and 8 are read twice and 10 is read four
times. So the first output produces an incorrect total of 77, instead of the correct total of
55. In the second output, the Consumer reads the value -1 before the Producer ever writes
a value. The Consumer reads the value 1 five times before the Producer writes the value 2.
Meanwhile, the values 5, 7, 8, 9 and 10 are all lost—the last four because the Consumer ter-
minates before the Producer. An incorrect consumer total of 19 is displayed. (Lines in the
output where the Producer or Consumer has acted out of order are highlighted.)

To solve the problems of lost and duplicated data, Section 23.6 presents an example in
which we use an ArrayBlockingQueue (from package java.util.concurrent) to syn-
chronize access to the shared object, guaranteeing that each and every value will be pro-
cessed once and only once.

23.6 Producer/Consumer Relationship:
ArrayBlockingQueue
The best way to synchronize producer and consumer threads is to use classes from Java’s
java.util.concurrent package that encapsulate the synchronization for you. Java includes
the class ArrayBlockingQueue—a fully implemented, thread-safe buffer class that imple-
ments interface BlockingQueue. This interface extends the Queue interface discussed in
Chapter 16 and declares methods put and take, the blocking equivalents of Queue meth-
ods offer and poll, respectively. Method put places an element at the end of the Block-
ingQueue, waiting if the queue is full. Method take removes an element from the head of
the BlockingQueue, waiting if the queue is empty. These methods make class Array-
BlockingQueue a good choice for implementing a shared buffer. Because method put
blocks until there’s room in the buffer to write data, and method take blocks until there’s
new data to read, the producer must produce a value first, the consumer correctly con-
sumes only after the producer writes a value and the producer correctly produces the next
value (after the first) only after the consumer reads the previous (or first) value. Array-
BlockingQueue stores the shared mutable data in an array, the size of which is specified as
an ArrayBlockingQueue constructor argument. Once created, an ArrayBlockingQueue is
fixed in size and will not expand to accommodate extra elements.

Class BlockingBuffer
Figures 23.14–23.15 demonstrate a Producer and a Consumer accessing an ArrayBlock-
ingQueue. Class BlockingBuffer (Fig. 23.14) uses an ArrayBlockingQueue object that
stores an Integer (line 7). Line 11 creates the ArrayBlockingQueue and passes 1 to the
constructor so that the object holds a single value to mimic the UnsynchronizedBuffer
example in Fig. 23.12. Lines 7 and 11 (Fig. 23.14) use generics, which we discussed in

Error-Prevention Tip 23.1
Access to a shared object by concurrent threads must be controlled carefully or a program
may produce incorrect results.

23.6 Producer/Consumer Relationship: ArrayBlockingQueue 985

Chapters 16–20. We discuss multiple-element buffers in Section 23.8. Because our Block-
ingBuffer class uses the thread-safe ArrayBlockingQueue class to manage all of its shared
state (the shared buffer in this case), BlockingBuffer is itself thread safe, even though we
have not implemented the synchronization ourselves.

BlockingBuffer implements interface Buffer (Fig. 23.9) and uses classes Producer
(Fig. 23.10 modified to remove line 28) and Consumer (Fig. 23.11 modified to remove
line 28) from the example in Section 23.5. This approach demonstrates encapsulated syn-
chronization—the threads accessing the shared object are unaware that their buffer accesses are
now synchronized. The synchronization is handled entirely in the blockingPut and block-
ingGet methods of BlockingBuffer by calling the synchronized ArrayBlockingQueue
methods put and take, respectively. Thus, the Producer and Consumer Runnables are
properly synchronized simply by calling the shared object’s blockingPut and block-
ingGet methods.

Line 17 in method blockingPut (Fig. 23.14, lines 15–20) calls the ArrayBlocking-
Queue object’s put method. This method call blocks if necessary until there’s room in the
buffer to place the value. Method blockingGet (lines 23–30) calls the ArrayBlocking-

1 // Fig. 23.14: BlockingBuffer.java
2 // Creating a synchronized buffer using an ArrayBlockingQueue.
3 import java.util.concurrent.ArrayBlockingQueue;
4
5 public class BlockingBuffer implements Buffer
6 {
7
8
9 public BlockingBuffer()

10 {
11
12 }
13
14 // place value into buffer
15 public void blockingPut(int value) throws InterruptedException
16 {
17
18 System.out.printf("%s%2d\t%s%d%n", "Producer writes ", value,
19 "Buffer cells occupied: ", buffer.size());
20 }
21
22 // return value from buffer
23 public int blockingGet() throws InterruptedException
24 {
25
26 System.out.printf("%s %2d\t%s%d%n", "Consumer reads ",
27 readValue, "Buffer cells occupied: ", buffer.size());
28
29 return readValue;
30 }
31 } // end class BlockingBuffer

Fig. 23.14 | Creating a synchronized buffer using an ArrayBlockingQueue.

private final ArrayBlockingQueue<Integer> buffer; // shared buffer

buffer = new ArrayBlockingQueue<Integer>(1);

buffer.put(value); // place value in buffer

int readValue = buffer.take(); // remove value from buffer

986 Chapter 23 Concurrency

Queue object’s take method (line 25). This method call blocks if necessary until there’s an
element in the buffer to remove. Lines 18–19 and 26–27 use the ArrayBlockingQueue
object’s size method to display the total number of elements currently in the Array-
BlockingQueue.

Class BlockingBufferTest
Class BlockingBufferTest (Fig. 23.15) contains the main method that launches the ap-
plication. Line 13 creates an ExecutorService, and line 16 creates a BlockingBuffer ob-
ject and assigns its reference to the Buffer variable sharedLocation. Lines 18–19 execute
the Producer and Consumer Runnables. Line 21 calls method shutdown to end the appli-
cation when the threads finish executing the Producer and Consumer tasks and line 22
waits for the scheduled tasks to complete.

1 // Fig. 23.15: BlockingBufferTest.java
2 // Two threads manipulating a blocking buffer that properly
3 // implements the producer/consumer relationship.
4 import java.util.concurrent.ExecutorService;
5 import java.util.concurrent.Executors;
6 import java.util.concurrent.TimeUnit;
7
8 public class BlockingBufferTest
9 {

10 public static void main(String[] args) throws InterruptedException
11 {
12 // create new thread pool with two threads
13 ExecutorService executorService = Executors.newCachedThreadPool();
14
15
16
17
18
19
20
21 executorService.shutdown();
22 executorService.awaitTermination(1, TimeUnit.MINUTES);
23 }
24 } // end class BlockingBufferTest

Producer writes 1 Buffer cells occupied: 1
Consumer reads 1 Buffer cells occupied: 0
Producer writes 2 Buffer cells occupied: 1
Consumer reads 2 Buffer cells occupied: 0
Producer writes 3 Buffer cells occupied: 1
Consumer reads 3 Buffer cells occupied: 0
Producer writes 4 Buffer cells occupied: 1
Consumer reads 4 Buffer cells occupied: 0
Producer writes 5 Buffer cells occupied: 1
Consumer reads 5 Buffer cells occupied: 0
Producer writes 6 Buffer cells occupied: 1

Fig. 23.15 | Two threads manipulating a blocking buffer that properly implements the
producer/consumer relationship. (Part 1 of 2.)

// create BlockingBuffer to store ints
Buffer sharedLocation = new BlockingBuffer();

executorService.execute(new Producer(sharedLocation));
executorService.execute(new Consumer(sharedLocation));

23.7 synchronized, wait, notify and notifyAll 987

While methods put and take of ArrayBlockingQueue are properly synchronized,
BlockingBuffer methods blockingPut and blockingGet (Fig. 23.14) are not declared to
be synchronized. Thus, the statements performed in method blockingPut—the put oper-
ation (line 17) and the output (lines 18–19)—are not atomic; nor are the statements in
method blockingGet—the take operation (line 25) and the output (lines 26–27). So
there’s no guarantee that each output will occur immediately after the corresponding put
or take operation, and the outputs may appear out of order. Even if they do, the Array-
BlockingQueue object is properly synchronizing access to the data, as evidenced by the fact
that the sum of values read by the consumer is always correct.

23.7 (Advanced) Producer/Consumer Relationship with
synchronized, wait, notify and notifyAll
[Note: This section is intended for advanced programmers who want to control synchro-
nization.2] The previous example showed how multiple threads can share a single-element
buffer in a thread-safe manner by using the ArrayBlockingQueue class that encapsulates
the synchronization necessary to protect the shared mutable data. For educational purpos-
es, we now explain how you can implement a shared buffer yourself using the synchro-
nized keyword and methods of class Object. Using an ArrayBlockingQueue generally
results in more-maintainable, better-performing code.

After identifying the shared mutable data and the synchronization policy (i.e., associ-
ating the data with a lock that guards it), the next step in synchronizing access to the buffer
is to implement methods blockingGet and blockingPut as synchronized methods. This
requires that a thread obtain the monitor lock on the Buffer object before attempting to
access the buffer data, but it does not automatically ensure that threads proceed with an
operation only if the buffer is in the proper state. We need a way to allow our threads to
wait, depending on whether certain conditions are true. In the case of placing a new item
in the buffer, the condition that allows the operation to proceed is that the buffer is not full.

Consumer reads 6 Buffer cells occupied: 0
Producer writes 7 Buffer cells occupied: 1
Consumer reads 7 Buffer cells occupied: 0
Producer writes 8 Buffer cells occupied: 1
Consumer reads 8 Buffer cells occupied: 0
Producer writes 9 Buffer cells occupied: 1
Consumer reads 9 Buffer cells occupied: 0
Producer writes 10 Buffer cells occupied: 1
Producer done producing
Terminating Producer
Consumer reads 10 Buffer cells occupied: 0
Consumer read values totaling 55
Terminating Consumer

2. For detailed information on wait, notify and notifyAll, see Chapter 14 of Java Concurrency in
Practice by Brian Goetz, et al., Addison-Wesley Professional, 2006.

Fig. 23.15 | Two threads manipulating a blocking buffer that properly implements the
producer/consumer relationship. (Part 2 of 2.)

988 Chapter 23 Concurrency

In the case of fetching an item from the buffer, the condition that allows the operation to
proceed is that the buffer is not empty. If the condition in question is true, the operation
may proceed; if it’s false, the thread must wait until it becomes true. When a thread is
waiting on a condition, it’s removed from contention for the processor and placed into the
waiting state and the lock it holds is released.

Methods wait, notify and notifyAll
Object methods wait, notify and notifyAll can be used with conditions to make threads
wait when they cannot perform their tasks. If a thread obtains the monitor lock on an object,
then determines that it cannot continue with its task on that object until some condition is
satisfied, the thread can call Object method wait on the synchronized object; this releases
the monitor lock on the object, and the thread waits in the waiting state while the other
threads try to enter the object’s synchronized statement(s) or method(s). When a thread
executing a synchronized statement (or method) completes or satisfies the condition on
which another thread may be waiting, it can call Object method notify on the synchro-
nized object to allow a waiting thread to transition to the runnable state again. At this
point, the thread that was transitioned from the waiting state to the runnable state can at-
tempt to reacquire the monitor lock on the object. Even if the thread is able to reacquire the
monitor lock, it still might not be able to perform its task at this time—in which case the
thread will reenter the waiting state and implicitly release the monitor lock. If a thread calls
notifyAll on the synchronized object, then all the threads waiting for the monitor lock
become eligible to reacquire the lock (that is, they all transition to the runnable state).

Remember that only one thread at a time can obtain the monitor lock on the object—
other threads that attempt to acquire the same monitor lock will be blocked until the mon-
itor lock becomes available again (i.e., until no other thread is executing in a synchronized
statement on that object).

Figures 23.16 and 23.17 demonstrate a Producer and a Consumer accessing a shared
buffer with synchronization. In this case, the Producer always produces a value first, the
Consumer correctly consumes only after the Producer produces a value and the Producer
correctly produces the next value only after the Consumer consumes the previous (or first)
value. We reuse interface Buffer and classes Producer and Consumer from the example in
Section 23.5, except that line 28 is removed from class Producer and class Consumer.

Class SynchronizedBuffer
The synchronization is handled in class SynchronizedBuffer’s blockingPut and blocking-
Get methods (Fig. 23.16), which implements interface Buffer (line 4). Thus, the Producer’s
and Consumer’s run methods simply call the shared object’s synchronized blockingPut and

Common Programming Error 23.1
It’s an error if a thread issues a wait, a notify or a notifyAll on an object without hav-
ing acquired a lock for it. This causes an IllegalMonitorStateException.

Error-Prevention Tip 23.2
It’s a good practice to use notifyAll to notify waiting threads to become runnable. Doing
so avoids the possibility that your program would forget about waiting threads, which
would otherwise starve.

23.7 synchronized, wait, notify and notifyAll 989

blockingGet methods. Again, we output messages from this class’s synchronized methods
for demonstration purposes only—I/O should not be performed in synchronized blocks, be-
cause it’s important to minimize the amount of time that an object is “locked.”

1 // Fig. 23.16: SynchronizedBuffer.java
2 // Synchronizing access to shared mutable data using Object
3 // methods wait and notifyAll.
4 public class SynchronizedBuffer implements Buffer
5 {
6 private int buffer = -1; // shared by producer and consumer threads
7 private boolean occupied = false;
8
9 // place value into buffer

10
11
12 {
13 // while there are no empty locations, place thread in waiting state
14
15 {
16 // output thread information and buffer information, then wait
17 System.out.println("Producer tries to write."); // for demo only
18 displayState("Buffer full. Producer waits."); // for demo only
19
20 }
21
22
23
24
25
26
27
28 displayState("Producer writes " + buffer); // for demo only
29
30
31 } // end method blockingPut; releases lock on SynchronizedBuffer
32
33 // return value from buffer
34
35 {
36 // while no data to read, place thread in waiting state
37 while (!occupied)
38 {
39 // output thread information and buffer information, then wait
40 System.out.println("Consumer tries to read."); // for demo only
41 displayState("Buffer empty. Consumer waits."); // for demo only
42
43 }
44
45
46
47

Fig. 23.16 | Synchronizing access to shared mutable data using Object methods wait and
notifyAll. (Part 1 of 2.)

public synchronized void blockingPut(int value)
 throws InterruptedException

while (occupied)

wait();

buffer = value; // set new buffer value

// indicate producer cannot store another value
// until consumer retrieves current buffer value
occupied = true;

notifyAll(); // tell waiting thread(s) to enter runnable state

public synchronized int blockingGet() throws InterruptedException

wait();

// indicate that producer can store another value
// because consumer just retrieved buffer value
occupied = false;

990 Chapter 23 Concurrency

Fields and Methods of Class SynchronizedBuffer
Class SynchronizedBuffer contains fields buffer (line 6) and occupied (line 7)—you
must synchronize access to both fields to ensure that class SynchronizedBuffer is thread
safe. Methods blockingPut (lines 10–31) and blockingGet (lines 34–54) are declared as
synchronized—only one thread can call either of these methods at a time on a particular
SynchronizedBuffer object. Field occupied is used to determine whether it’s the Produc-
er’s or the Consumer’s turn to perform a task. This field is used in conditional expressions
in both the blockingPut and blockingGet methods. If occupied is false, then buffer is
empty, so the Consumer cannot read the value of buffer, but the Producer can place a val-
ue into buffer. If occupied is true, the Consumer can read a value from buffer, but the
Producer cannot place a value into buffer.

Method blockingPut and the Producer Thread
When the Producer thread’s run method invokes synchronized method blockingPut,
the thread implicitly attempts to acquire the SynchronizedBuffer object’s monitor lock.
If the monitor lock is available, the Producer thread implicitly acquires the lock. Then the
loop at lines 14–20 first determines whether occupied is true. If so, buffer is full and we
want to wait until the buffer is empty, so line 17 outputs a message indicating that the
Producer thread is trying to write a value, and line 18 invokes method displayState
(lines 57–61) to output another message indicating that buffer is full and that the Pro-
ducer thread is waiting until there’s space. Line 19 invokes method wait (inherited from
Object by SynchronizedBuffer) to place the thread that called method blockingPut (i.e.,
the Producer thread) in the waiting state for the SynchronizedBuffer object. The call to
wait causes the calling thread to implicitly release the lock on the SynchronizedBuffer ob-
ject. This is important because the thread cannot currently perform its task and because
other threads (in this case, the Consumer) should be allowed to access the object to allow
the condition (occupied) to change. Now another thread can attempt to acquire the Syn-
chronizedBuffer object’s lock and invoke the object’s blockingPut or blockingGet
method.

48
49 displayState("Consumer reads " + buffer); // for demo only
50
51
52
53 return buffer;
54 } // end method blockingGet; releases lock on SynchronizedBuffer
55
56 // display current operation and buffer state; for demo only
57 private void displayState(String operation)
58 {
59 System.out.printf("%-40s%d\t\t%b%n%n", operation, buffer,
60 occupied);
61 }
62 } // end class SynchronizedBuffer

Fig. 23.16 | Synchronizing access to shared mutable data using Object methods wait and
notifyAll. (Part 2 of 2.)

notifyAll(); // tell waiting thread(s) to enter runnable state

synchronized

23.7 synchronized, wait, notify and notifyAll 991

The Producer thread remains in the waiting state until another thread notifies the
Producer that it may proceed—at which point the Producer returns to the runnable state
and attempts to implicitly reacquire the lock on the SynchronizedBuffer object. If the
lock is available, the Producer thread reacquires it, and method blockingPut continues
executing with the next statement after the wait call. Because wait is called in a loop, the
loop-continuation condition is tested again to determine whether the thread can proceed.
If not, then wait is invoked again—otherwise, method blockingPut continues with the
next statement after the loop.

Line 22 in method blockingPut assigns the value to the buffer. Line 26 sets occu-
pied to true to indicate that the buffer now contains a value (i.e., a consumer can read
the value, but a Producer cannot yet put another value there). Line 28 invokes method
displayState to output a message indicating that the Producer is writing a new value into
the buffer. Line 30 invokes method notifyAll (inherited from Object). If any threads
are waiting on the SynchronizedBuffer object’s monitor lock, those threads enter the
runnable state and can now attempt to reacquire the lock. Method notifyAll returns
immediately, and method blockingPut then returns to the caller (i.e., the Producer’s run
method). When method blockingPut returns, it implicitly releases the monitor lock on the
SynchronizedBuffer object.

Method blockingGet and the Consumer Thread
Methods blockingGet and blockingPut are implemented similarly. When the Consumer
thread’s run method invokes synchronized method blockingGet, the thread attempts to
acquire the monitor lock on the SynchronizedBuffer object. If the lock is available, the
Consumer thread acquires it. Then the while loop at lines 37–43 determines whether oc-
cupied is false. If so, the buffer is empty, so line 40 outputs a message indicating that the
Consumer thread is trying to read a value, and line 41 invokes method displayState to
output a message indicating that the buffer is empty and that the Consumer thread is wait-
ing. Line 42 invokes method wait to place the thread that called method blockingGet
(i.e., the Consumer) in the waiting state for the SynchronizedBuffer object. Again, the call
to wait causes the calling thread to implicitly release the lock on the SynchronizedBuffer
object, so another thread can attempt to acquire the SynchronizedBuffer object’s lock
and invoke the object’s blockingPut or blockingGet method. If the lock on the Synchro-
nizedBuffer is not available (e.g., if the Producer has not yet returned from method
blockingPut), the Consumer is blocked until the lock becomes available.

The Consumer thread remains in the waiting state until it’s notified by another thread
that it may proceed—at which point the Consumer thread returns to the runnable state and
attempts to implicitly reacquire the lock on the SynchronizedBuffer object. If the lock is
available, the Consumer reacquires it, and method blockingGet continues executing with
the next statement after wait. Because wait is called in a loop, the loop-continuation con-
dition is tested again to determine whether the thread can proceed with its execution. If
not, wait is invoked again—otherwise, method blockingGet continues with the next
statement after the loop. Line 47 sets occupied to false to indicate that buffer is now
empty (i.e., a Consumer cannot read the value, but a Producer can place another value in
buffer), line 49 calls method displayState to indicate that the consumer is reading and
line 51 invokes method notifyAll. If any threads are in the waiting state for the lock on
this SynchronizedBuffer object, they enter the runnable state and can now attempt to

992 Chapter 23 Concurrency

reacquire the lock. Method notifyAll returns immediately, then method blockingGet
returns the value of buffer to its caller. When method blockingGet returns, the lock on
the SynchronizedBuffer object is implicitly released.

Method displayState Is Also synchronized
Notice that method displayState is a synchronized method. This is important because
it, too, reads the SynchronizedBuffer’s shared mutable data. Though only one thread at
a time may acquire a given object’s lock, one thread may acquire the same object’s lock
multiple times—this is known as a reentrant lock and enables one synchronized method
to invoke another on the same object.

Testing Class SynchronizedBuffer
Class SharedBufferTest2 (Fig. 23.17) is similar to class SharedBufferTest (Fig. 23.13).
SharedBufferTest2 contains method main (Fig. 23.17, lines 9–26), which launches the
application. Line 12 creates an ExecutorService to run the Producer and Consumer tasks.
Line 15 creates a SynchronizedBuffer object and assigns its reference to Buffer variable
sharedLocation. This object stores the data that will be shared between the Producer and
Consumer. Lines 17–18 display the column heads for the output. Lines 21–22 execute a
Producer and a Consumer. Finally, line 24 calls method shutdown to end the application
when the Producer and Consumer complete their tasks and line 25 waits for the scheduled
tasks to complete. When method main ends (line 26), the main thread of execution termi-
nates.

Error-Prevention Tip 23.3
Always invoke method wait in a loop that tests the condition the task is waiting on. It’s
possible that a thread will reenter the runnable state (via a timed wait or another thread
calling notifyAll) before the condition is satisfied. Testing the condition again ensures
that the thread will not erroneously execute if it was notified early.

1 // Fig. 23.17: SharedBufferTest2.java
2 // Two threads correctly manipulating a synchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedBufferTest2
8 {
9 public static void main(String[] args) throws InterruptedException

10 {
11 // create a newCachedThreadPool
12 ExecutorService executorService = Executors.newCachedThreadPool();
13
14
15
16
17 System.out.printf("%-40s%s\t\t%s%n%-40s%s%n%n", "Operation",
18 "Buffer", "Occupied", "---------", "------\t\t--------");
19

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 1 of 3.)

// create SynchronizedBuffer to store ints
Buffer sharedLocation = new SynchronizedBuffer();

23.7 synchronized, wait, notify and notifyAll 993

20 // execute the Producer and Consumer tasks
21
22
23
24 executorService.shutdown();
25 executorService.awaitTermination(1, TimeUnit.MINUTES);
26 }
27 } // end class SharedBufferTest2

Operation Buffer Occupied
--------- ------ --------

Consumer tries to read.
 -1 false

Producer writes 1 1 true

Consumer reads 1 1 false

Consumer tries to read.
 1 false

Producer writes 2 2 true

Consumer reads 2 2 false

Producer writes 3 3 true

Consumer reads 3 3 false

Producer writes 4 4 true

Producer tries to write.
 4 true

Consumer reads 4 4 false

Producer writes 5 5 true

Consumer reads 5 5 false

Producer writes 6 6 true

Producer tries to write.
 6 true

Consumer reads 6 6 false

Producer writes 7 7 true

Producer tries to write.
 7 true

Consumer reads 7 7 false

Producer writes 8 8 true

Consumer reads 8 8 false

Consumer tries to read.
 8 false

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 2 of 3.)

executorService.execute(new Producer(sharedLocation));
executorService.execute(new Consumer(sharedLocation));

Buffer empty. Consumer waits.

Buffer empty. Consumer waits.

Buffer full. Producer waits.

Buffer full. Producer waits.

Buffer full. Producer waits.

Buffer empty. Consumer waits.

994 Chapter 23 Concurrency

Study the outputs in Fig. 23.17. Observe that every integer produced is consumed exactly
once—no values are lost, and no values are consumed more than once. The synchronization
ensures that the Producer produces a value only when the buffer is empty and the Con-
sumer consumes only when the buffer is full. The Producer always goes first, the Consumer
waits if the Producer has not produced since the Consumer last consumed, and the Pro-
ducer waits if the Consumer has not yet consumed the value that the Producer most
recently produced. Execute this program several times to confirm that every integer pro-
duced is consumed exactly once. In the sample output, note the highlighted lines indi-
cating when the Producer and Consumer must wait to perform their respective tasks.

23.8 (Advanced) Producer/Consumer Relationship:
Bounded Buffers
The program in Section 23.7 uses thread synchronization to guarantee that two threads
manipulate data in a shared buffer correctly. However, the application may not perform
optimally. If the two threads operate at different speeds, one of them will spend more (or
most) of its time waiting. For example, in the program in Section 23.7 we shared a single
integer variable between the two threads. If the Producer thread produces values faster
than the Consumer can consume them, then the Producer thread waits for the Consumer,
because there are no other locations in the buffer in which to place the next value. Simi-
larly, if the Consumer consumes values faster than the Producer produces them, the Con-
sumer waits until the Producer places the next value in the shared buffer. Even when we
have threads that operate at the same relative speeds, those threads may occasionally be-
come “out of sync” over a period of time, causing one of them to wait for the other.

Producer writes 9 9 true

Consumer reads 9 9 false

Consumer tries to read.
 9 false

Producer writes 10 10 true

Consumer reads 10 10 false

Producer done producing
Terminating Producer

Consumer read values totaling 55
Terminating Consumer

Performance Tip 23.3
We cannot make assumptions about the relative speeds of concurrent threads—
interactions that occur with the operating system, the network, the user and other compo-
nents can cause the threads to operate at different and ever-changing speeds. When this
happens, threads wait. When threads wait excessively, programs become less efficient,
interactive programs become less responsive and applications suffer longer delays.

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 3 of 3.)

Buffer empty. Consumer waits.

23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 995

Bounded Buffers
To minimize the amount of waiting time for threads that share resources and operate at
the same average speeds, we can implement a bounded buffer that provides a fixed number
of buffer cells into which the Producer can place values, and from which the Consumer can
retrieve those values. (In fact, we’ve already done this with the ArrayBlockingQueue class
in Section 23.6.) If the Producer temporarily produces values faster than the Consumer can
consume them, the Producer can write additional values into the extra buffer cells, if any
are available. This capability enables the Producer to perform its task even though the
Consumer is not ready to retrieve the current value being produced. Similarly, if the Con-
sumer consumes faster than the Producer produces new values, the Consumer can read ad-
ditional values (if there are any) from the buffer. This enables the Consumer to keep busy
even though the Producer is not ready to produce additional values. An example of the
producer/consumer relationship that uses a bounded buffer is video streaming, which we
discussed in Section 23.1.

Even a bounded buffer is inappropriate if the Producer and the Consumer operate con-
sistently at different speeds. If the Consumer always executes faster than the Producer, then
a buffer containing one location is enough. If the Producer always executes faster, only a
buffer with an “infinite” number of locations would be able to absorb the extra produc-
tion. However, if the Producer and Consumer execute at about the same average speed, a
bounded buffer helps to smooth the effects of any occasional speeding up or slowing down
in either thread’s execution.

The key to using a bounded buffer with a Producer and Consumer that operate at about
the same speed is to provide the buffer with enough locations to handle the anticipated
“extra” production. If, over a period of time, we determine that the Producer often pro-
duces as many as three more values than the Consumer can consume, we can provide a
buffer of at least three cells to handle the extra production. Making the buffer too small
would cause threads to wait longer.

[Note: As we mention in Fig. 23.22, ArrayBlockingQueue can work with multiple
producers and multiple consumers. For example, a factory that produces its product very
fast will need to have many more delivery trucks (i.e., consumers) to remove those prod-
ucts quickly from the warehousing area (i.e., the bounded buffer) so that the factory can
continue to produce products at full capacity.]

Bounded Buffers Using ArrayBlockingQueue
The simplest way to implement a bounded buffer is to use an ArrayBlockingQueue for the
buffer so that all of the synchronization details are handled for you. This can be done by mod-
ifying the example from Section 23.6 to pass the desired size for the bounded buffer into the
ArrayBlockingQueue constructor. Rather than repeat our previous ArrayBlockingQueue
example with a different size, we instead present an example that illustrates how you can

Performance Tip 23.4
Even when using a bounded buffer, it’s possible that a producer thread could fill the buf-
fer, which would force the producer to wait until a consumer consumed a value to free an
element in the buffer. Similarly, if the buffer is empty at any given time, a consumer
thread must wait until the producer produces another value. The key to using a bounded
buffer is to optimize the buffer size to minimize the amount of thread wait time, while
not wasting space.

996 Chapter 23 Concurrency

build a bounded buffer yourself. Again, using an ArrayBlockingQueue will result in more-
maintainable and better-performing code. In Exercise 23.13, we ask you to reimplement this
section’s example, using the Java Concurrency API techniques presented in Section 23.9.

Implementing Your Own Bounded Buffer as a Circular Buffer
The program in Figs. 23.18 and 23.19 demonstrates a Producer and a Consumer accessing
a bounded buffer with synchronization. Again, we reuse interface Buffer and classes Pro-
ducer and Consumer from the example in Section 23.5, except that line 28 is removed
from class Producer and class Consumer. We implement the bounded buffer in class Cir-
cularBuffer (Fig. 23.18) as a circular buffer that uses a shared array of three elements. A
circular buffer writes into and reads from the array elements in order, beginning at the first
cell and moving toward the last. When a Producer or Consumer reaches the last element,
it returns to the first and begins writing or reading, respectively, from there. In this version
of the producer/consumer relationship, the Consumer consumes a value only when the ar-
ray is not empty and the Producer produces a value only when the array is not full. Once
again, the output statements used in this class’s synchronized methods are for demonstra-
tion purposes only.

1 // Fig. 23.18: CircularBuffer.java
2 // Synchronizing access to a shared three-element bounded buffer.
3 public class CircularBuffer implements Buffer
4 {
5 private final int[] buffer = {-1, -1, -1}; // shared buffer
6
7 private int occupiedCells = 0; // count number of buffers used
8 private int writeIndex = 0; // index of next element to write to
9 private int readIndex = 0; // index of next element to read

10
11 // place value into buffer
12
13
14 {
15 // wait until buffer has space available, then write value;
16
17
18
19
20
21
22
23 buffer[writeIndex] = value; // set new buffer value
24
25 // update circular write index
26
27
28 ++occupiedCells; // one more buffer cell is full
29 displayState("Producer writes " + value);
30 notifyAll(); // notify threads waiting to read from buffer
31 }

Fig. 23.18 | Synchronizing access to a shared three-element bounded buffer. (Part 1 of 3.)

public synchronized void blockingPut(int value)
 throws InterruptedException

// while no empty locations, place thread in blocked state
while (occupiedCells == buffer.length)
{
 System.out.printf("Buffer is full. Producer waits.%n");
 wait(); // wait until a buffer cell is free
} // end while

writeIndex = (writeIndex + 1) % buffer.length;

23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 997

32
33 // return value from buffer
34 public synchronized int blockingGet() throws InterruptedException
35 {
36 // wait until buffer has data, then read value;
37 // while no data to read, place thread in waiting state
38 while (occupiedCells == 0)
39 {
40 System.out.printf("Buffer is empty. Consumer waits.%n");
41 wait(); // wait until a buffer cell is filled
42 } // end while
43
44 int readValue = buffer[readIndex]; // read value from buffer
45
46 // update circular read index
47
48
49 --occupiedCells; // one fewer buffer cells are occupied
50 displayState("Consumer reads " + readValue);
51 notifyAll(); // notify threads waiting to write to buffer
52
53 return readValue;
54 }
55
56 // display current operation and buffer state
57 public void displayState(String operation)
58 {
59 // output operation and number of occupied buffer cells
60 System.out.printf("%s%s%d)%n%s", operation,
61 " (buffer cells occupied: ", occupiedCells, "buffer cells: ");
62
63 for (int value : buffer)
64 System.out.printf(" %2d ", value); // output values in buffer
65
66 System.out.printf("%n ");
67
68 for (int i = 0; i < buffer.length; i++)
69 System.out.print("---- ");
70
71 System.out.printf("%n ");
72
73 for (int i = 0; i < buffer.length; i++)
74 {
75 if (i == writeIndex && i == readIndex)
76 System.out.print(" WR"); // both write and read index
77 else if (i == writeIndex)
78 System.out.print(" W "); // just write index
79 else if (i == readIndex)
80 System.out.print(" R "); // just read index
81 else
82 System.out.print(" "); // neither index
83 }
84

Fig. 23.18 | Synchronizing access to a shared three-element bounded buffer. (Part 2 of 3.)

readIndex = (readIndex + 1) % buffer.length;

synchronized

998 Chapter 23 Concurrency

Line 5 initializes array buffer as a three-element int array that represents the circular
buffer. Variable occupiedCells (line 7) counts the number of elements in buffer that
contain data to be read. When occupiedBuffers is 0, the circular buffer is empty and the
Consumer must wait—when occupiedCells is 3 (the size of the circular buffer), the cir-
cular buffer is full and the Producer must wait. Variable writeIndex (line 8) indicates the
next location in which a value can be placed by a Producer. Variable readIndex (line 9)
indicates the position from which the next value can be read by a Consumer. Circular-
Buffer’s instance variables are all part of the class’s shared mutable data, thus access to all
of these variables must be synchronized to ensure that a CircularBuffer is thread safe.

CircularBuffer Method blockingPut
CircularBuffer method blockingPut (lines 12–31) performs the same tasks as in
Fig. 23.16, with a few modifications. The loop at lines 17–21 determines whether the
Producer must wait (i.e., all buffer cells are full). If so, line 19 indicates that the Producer
is waiting to perform its task. Then line 20 invokes method wait, causing the Producer
thread to release the CircularBuffer’s lock and wait until there’s space for a new value to
be written into the buffer. When execution continues at line 23 after the while loop, the
value written by the Producer is placed in the circular buffer at location writeIndex. Then
line 26 updates writeIndex for the next call to CircularBuffer method blockingPut.
This line is the key to the buffer’s circularity. When writeIndex is incremented past the
end of the buffer, the line sets it to 0. Line 28 increments occupiedCells, because there’s
now one more value in the buffer that the Consumer can read. Next, line 29 invokes meth-
od displayState (lines 57–86) to update the output with the value produced, the number
of occupied buffer cells, the contents of the buffer cells and the current writeIndex and
readIndex. Line 30 invokes method notifyAll to transition waiting threads to the run-
nable state, so that a waiting Consumer thread (if there is one) can now try again to read a
value from the buffer.

CircularBuffer Method blockingGet
CircularBuffer method blockingGet (lines 34–54) also performs the same tasks as it did
in Fig. 23.16, with a few minor modifications. The loop at lines 38–42 (Fig. 23.18) de-
termines whether the Consumer must wait (i.e., all buffer cells are empty). If the Consumer
must wait, line 40 updates the output to indicate that the Consumer is waiting to perform
its task. Then line 41 invokes method wait, causing the current thread to release the lock
on the CircularBuffer and wait until data is available to read. When execution eventually
continues at line 44 after a notifyAll call from the Producer, readValue is assigned the
value at location readIndex in the circular buffer. Then line 47 updates readIndex for the
next call to CircularBuffer method blockingGet. This line and line 26 implement the
circularity of the buffer. Line 49 decrements occupiedCells, because there’s now one
more position in the buffer in which the Producer thread can place a value. Line 50 in-
vokes method displayState to update the output with the consumed value, the number

85 System.out.printf("%n%n");
86 }
87 } // end class CircularBuffer

Fig. 23.18 | Synchronizing access to a shared three-element bounded buffer. (Part 3 of 3.)

23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 999

of occupied buffer cells, the contents of the buffer cells and the current writeIndex and
readIndex. Line 51 invokes method notifyAll to allow any Producer threads waiting to
write into the CircularBuffer object to attempt to write again. Then line 53 returns the
consumed value to the caller.

CircularBuffer Method displayState
Method displayState (lines 57–86) outputs the application’s state. Lines 63–64 output
the values of the buffer cells. Line 64 uses method printf with a "%2d" format specifier
to print the contents of each buffer with a leading space if it’s a single digit. Lines 71–83
output the current writeIndex and readIndex with the letters W and R, respectively. Once
again, displayState is a synchronized method because it accesses class CircularBuffer’s
shared mutable data.

Testing Class CircularBuffer
Class CircularBufferTest (Fig. 23.19) contains the main method that launches the ap-
plication. Line 12 creates the ExecutorService, and line 15 creates a CircularBuffer ob-
ject and assigns its reference to CircularBuffer variable sharedLocation. Line 18
invokes the CircularBuffer’s displayState method to show the initial state of the buf-
fer. Lines 21–22 execute the Producer and Consumer tasks. Line 24 calls method shutdown
to end the application when the threads complete the Producer and Consumer tasks and
line 25 waits for the tasks to complete.

1 // Fig. 23.19: CircularBufferTest.java
2 // Producer and Consumer threads correctly manipulating a circular buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5 import java.util.concurrent.TimeUnit;
6
7 public class CircularBufferTest
8 {
9 public static void main(String[] args) throws InterruptedException

10 {
11 // create new thread pool with two threads
12 ExecutorService executorService = Executors.newCachedThreadPool();
13
14
15
16
17 // display the initial state of the CircularBuffer
18 sharedLocation.displayState("Initial State");
19
20 // execute the Producer and Consumer tasks
21
22
23
24 executorService.shutdown();
25 executorService.awaitTermination(1, TimeUnit.MINUTES);
26 }
27 } // end class CircularBufferTest

Fig. 23.19 | Producer and Consumer threads correctly manipulating a circular buffer. (Part 1 of 3.)

// create CircularBuffer to store ints
CircularBuffer sharedLocation = new CircularBuffer();

executorService.execute(new Producer(sharedLocation));
executorService.execute(new Consumer(sharedLocation));

1000 Chapter 23 Concurrency

Initial State (buffer cells occupied: 0)
buffer cells: -1 -1 -1
 ---- ---- ----
 WR

Producer writes 1 (buffer cells occupied: 1)
buffer cells: 1 -1 -1
 ---- ---- ----
 R W

Consumer reads 1 (buffer cells occupied: 0)
buffer cells: 1 -1 -1
 ---- ---- ----
 WR

Producer writes 2 (buffer cells occupied: 1)
buffer cells: 1 2 -1
 ---- ---- ----
 R W

Consumer reads 2 (buffer cells occupied: 0)
buffer cells: 1 2 -1
 ---- ---- ----
 WR

Producer writes 3 (buffer cells occupied: 1)
buffer cells: 1 2 3
 ---- ---- ----
 W R

Consumer reads 3 (buffer cells occupied: 0)
buffer cells: 1 2 3
 ---- ---- ----
 WR

Producer writes 4 (buffer cells occupied: 1)
buffer cells: 4 2 3
 ---- ---- ----
 R W

Producer writes 5 (buffer cells occupied: 2)
buffer cells: 4 5 3
 ---- ---- ----
 R W

Consumer reads 4 (buffer cells occupied: 1)
buffer cells: 4 5 3
 ---- ---- ----
 R W

Producer writes 6 (buffer cells occupied: 2)
buffer cells: 4 5 6
 ---- ---- ----
 W R

Fig. 23.19 | Producer and Consumer threads correctly manipulating a circular buffer. (Part 2 of 3.)

Buffer is empty. Consumer waits.

23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 1001

Producer writes 7 (buffer cells occupied: 3)
buffer cells: 7 5 6
 ---- ---- ----
 WR

Consumer reads 5 (buffer cells occupied: 2)
buffer cells: 7 5 6
 ---- ---- ----
 W R

Producer writes 8 (buffer cells occupied: 3)
buffer cells: 7 8 6
 ---- ---- ----
 WR

Consumer reads 6 (buffer cells occupied: 2)
buffer cells: 7 8 6
 ---- ---- ----
 R W

Consumer reads 7 (buffer cells occupied: 1)
buffer cells: 7 8 6
 ---- ---- ----
 R W

Producer writes 9 (buffer cells occupied: 2)
buffer cells: 7 8 9
 ---- ---- ----
 W R

Consumer reads 8 (buffer cells occupied: 1)
buffer cells: 7 8 9
 ---- ---- ----
 W R

Consumer reads 9 (buffer cells occupied: 0)
buffer cells: 7 8 9
 ---- ---- ----
 WR

Producer writes 10 (buffer cells occupied: 1)
buffer cells: 10 8 9
 ---- ---- ----
 R W

Producer done producing
Terminating Producer
Consumer reads 10 (buffer cells occupied: 0)
buffer cells: 10 8 9
 ---- ---- ----
 WR

Consumer read values totaling: 55
Terminating Consumer

Fig. 23.19 | Producer and Consumer threads correctly manipulating a circular buffer. (Part 3 of 3.)

1002 Chapter 23 Concurrency

Each time the Producer writes a value or the Consumer reads a value, the program out-
puts a message indicating the action performed (a read or a write), the contents of buffer,
and the location of writeIndex and readIndex. In the output of Fig. 23.19, the Producer
first writes the value 1. The buffer then contains the value 1 in the first cell and the value
–1 (the default value that we use for output purposes) in the other two cells. The write
index is updated to the second cell, while the read index stays at the first cell. Next, the
Consumer reads 1. The buffer contains the same values, but the read index has been
updated to the second cell. The Consumer then tries to read again, but the buffer is empty
and the Consumer is forced to wait. Only once in this execution of the program was it nec-
essary for either thread to wait.

23.9 (Advanced) Producer/Consumer Relationship: The
Lock and Condition Interfaces
Though the synchronized keyword provides for most basic thread-synchronization
needs, Java provides other tools to assist in developing concurrent programs. In this sec-
tion, we discuss the Lock and Condition interfaces. These interfaces give you more precise
control over thread synchronization, but are more complicated to use. Only the most ad-
vanced programmers should use these interfaces.

Interface Lock and Class ReentrantLock
Any object can contain a reference to an object that implements the Lock interface (of
package java.util.concurrent.locks). A thread calls the Lock’s lock method (analo-
gous to entering a synchronized block) to acquire the lock. Once a Lock has been ob-
tained by one thread, the Lock object will not allow another thread to obtain the Lock until
the first thread releases the Lock (by calling the Lock’s unlock method—analogous to ex-
iting a synchronized block). If several threads are trying to call method lock on the same
Lock object at the same time, only one of these threads can obtain the lock—all the others
are placed in the waiting state for that lock. When a thread calls method unlock, the lock
on the object is released and a waiting thread attempting to lock the object proceeds.

Class ReentrantLock (of package java.util.concurrent.locks) is a basic imple-
mentation of the Lock interface. The constructor for a ReentrantLock takes a boolean
argument that specifies whether the lock has a fairness policy. If the argument is true, the
ReentrantLock’s fairness policy is “the longest-waiting thread will acquire the lock when
it’s available.” Such a fairness policy guarantees that indefinite postponement (also called
starvation) cannot occur. If the fairness policy argument is set to false, there’s no guar-
antee as to which waiting thread will acquire the lock when it’s available.

Error-Prevention Tip 23.4
Place calls to Lock method unlock in a finally block. If an exception is thrown, unlock
must still be called or deadlock could occur.

Software Engineering Observation 23.6
Using a ReentrantLock with a fairness policy avoids indefinite postponement.

23.9 The Lock and Condition Interfaces 1003

Condition Objects and Interface Condition
If a thread that owns a Lock determines that it cannot continue with its task until some
condition is satisfied, the thread can wait on a condition object. Using Lock objects allows
you to explicitly declare the condition objects on which a thread may need to wait. For
example, in the producer/consumer relationship, producers can wait on one object and
consumers can wait on another. This is not possible when using the synchronized key-
words and an object’s built-in monitor lock. Condition objects are associated with a spe-
cific Lock and are created by calling a Lock’s newCondition method, which returns an
object that implements the Condition interface (of package java.util.concur-
rent.locks). To wait on a condition object, the thread can call the Condition’s await
method (analogous to Object method wait). This immediately releases the associated
Lock and places the thread in the waiting state for that Condition. Other threads can then
try to obtain the Lock. When a runnable thread completes a task and determines that the
waiting thread can now continue, the runnable thread can call Condition method signal
(analogous to Object method notify) to allow a thread in that Condition’s waiting state
to return to the runnable state. At this point, the thread that transitioned from the waiting
state to the runnable state can attempt to reacquire the Lock. Even if it’s able to reacquire
the Lock, the thread still might not be able to perform its task at this time—in which case
the thread can call the Condition’s await method to release the Lock and reenter the wait-
ing state. If multiple threads are in a Condition’s waiting state when signal is called, the
default implementation of Condition signals the longest-waiting thread to transition to
the runnable state. If a thread calls Condition method signalAll (analogous to Object
method notifyAll), then all the threads waiting for that condition transition to the run-
nable state and become eligible to reacquire the Lock. Only one of those threads can obtain
the Lock on the object—the others will wait until the Lock becomes available again. If the
Lock has a fairness policy, the longest-waiting thread acquires the Lock. When a thread is
finished with a shared object, it must call method unlock to release the Lock.

Performance Tip 23.5
In most cases, a non-fair lock is preferable, because using a fair lock can decrease program
performance.

Error-Prevention Tip 23.5
When multiple threads manipulate a shared object using locks, ensure that if one thread
calls method await to enter the waiting state for a condition object, a separate thread
eventually will call Condition method signal to transition the thread waiting on the
condition object back to the runnable state. If multiple threads may be waiting on the
condition object, a separate thread can call Condition method signalAll as a safeguard
to ensure that all the waiting threads have another opportunity to perform their tasks. If
this is not done, starvation might occur.

Common Programming Error 23.2
An IllegalMonitorStateException occurs if a thread issues an await, a signal, or a
signalAll on a Condition object that was created from a ReentrantLock without hav-
ing acquired the lock for that Condition object.

1004 Chapter 23 Concurrency

Lock and Condition vs. the synchronized Keyword
In some applications, using Lock and Condition objects may be preferable to using the syn-
chronized keyword. Locks allow you to interrupt waiting threads or to specify a timeout for
waiting to acquire a lock, which is not possible using the synchronized keyword. Also, a
Lock is not constrained to be acquired and released in the same block of code, which is the
case with the synchronized keyword. Condition objects allow you to specify multiple con-
ditions on which threads may wait. Thus, it’s possible to indicate to waiting threads that a
specific condition object is now true by calling signal or signallAll on that Condition ob-
ject. With synchronized, there’s no way to explicitly state the condition on which threads
are waiting, and thus there’s no way to notify threads waiting on one condition that they may
proceed without also signaling threads waiting on any other conditions. There are other pos-
sible advantages to using Lock and Condition objects, but generally it’s best to use the syn-
chronized keyword unless your application requires advanced synchronization capabilities.

Using Locks and Conditions to Implement Synchronization
We now implement the producer/consumer relationship using Lock and Condition ob-
jects to coordinate access to a shared single-element buffer (Figs. 23.20 and 23.21). In this
case, each produced value is correctly consumed exactly once. Again, we reuse interface
Buffer and classes Producer and Consumer from the example in Section 23.5, except that
line 28 is removed from class Producer and class Consumer.

Class SynchronizedBuffer
Class SynchronizedBuffer (Fig. 23.20) contains five fields. Line 11 creates a new object
of type ReentrantLock and assigns its reference to Lock variable accessLock. The Reen-
trantLock is created without the fairness policy because at any time only a single Producer
or Consumer will be waiting to acquire the Lock in this example. Lines 14–15 create two
Conditions using Lock method newCondition. Condition canWrite contains a queue for
a Producer thread waiting while the buffer is full (i.e., there’s data in the buffer that the
Consumer has not read yet). If the buffer is full, the Producer calls method await on this
Condition. When the Consumer reads data from a full buffer, it calls method signal on
this Condition. Condition canRead contains a queue for a Consumer thread waiting while
the buffer is empty (i.e., there’s no data in the buffer for the Consumer to read). If the buffer
is empty, the Consumer calls method await on this Condition. When the Producer writes
to the empty buffer, it calls method signal on this Condition. The int variable buffer
(line 17) holds the shared mutable data. The boolean variable occupied (line 18) keeps
track of whether the buffer currently holds data (that the Consumer should read).

Software Engineering Observation 23.7
Think of Lock and Condition as an advanced version of synchronized. Lock and
Condition support timed waits, interruptible waits and multiple Condition queues per
Lock—if you do not need one of these features, you do not need Lock and Condition.

Error-Prevention Tip 23.6
Using interfaces Lock and Condition is error prone—unlock is not guaranteed to be
called, whereas the monitor in a synchronized statement will always be released when
the statement completes execution. Of course, you can guarantee that unlock will be
called if it’s placed in a finally block, as we do in Fig. 23.20.

23.9 The Lock and Condition Interfaces 1005

1 // Fig. 23.20: SynchronizedBuffer.java
2 // Synchronizing access to a shared integer using the Lock and Condition
3 // interfaces
4 import java.util.concurrent.locks.Lock;
5 import java.util.concurrent.locks.ReentrantLock;
6 import java.util.concurrent.locks.Condition;
7
8 public class SynchronizedBuffer implements Buffer
9 {

10
11
12
13
14
15
16
17
18 private boolean occupied = false; // whether buffer is occupied
19
20 // place int value into buffer
21 public void blockingPut(int value) throws InterruptedException
22 {
23
24
25 // output thread information and buffer information, then wait
26 try
27 {
28 // while buffer is not empty, place thread in waiting state
29 while (occupied)
30 {
31 System.out.println("Producer tries to write.");
32 displayState("Buffer full. Producer waits.");
33
34 }
35
36 buffer = value; // set new buffer value
37
38 // indicate producer cannot store another value
39 // until consumer retrieves current buffer value
40 occupied = true;
41
42 displayState("Producer writes " + buffer);
43
44
45
46 }
47 finally
48 {
49
50 }
51 }

Fig. 23.20 | Synchronizing access to a shared integer using the Lock and Condition
interfaces. (Part 1 of 2.)

// Lock to control synchronization with this buffer
private final Lock accessLock = new ReentrantLock();

// conditions to control reading and writing
private final Condition canWrite = accessLock.newCondition();
private final Condition canRead = accessLock.newCondition();

private int buffer = -1; // shared by producer and consumer threads

accessLock.lock(); // lock this object

canWrite.await(); // wait until buffer is empty

// signal any threads waiting to read from buffer
canRead.signalAll();

accessLock.unlock(); // unlock this object

1006 Chapter 23 Concurrency

52
53 // return value from buffer
54 public int blockingGet() throws InterruptedException
55 {
56 int readValue = 0; // initialize value read from buffer
57
58
59 // output thread information and buffer information, then wait
60 try
61 {
62 // if there is no data to read, place thread in waiting state
63 while (!occupied)
64 {
65 System.out.println("Consumer tries to read.");
66 displayState("Buffer empty. Consumer waits.");
67
68 }
69
70 // indicate that producer can store another value
71 // because consumer just retrieved buffer value
72 occupied = false;
73
74 readValue = buffer; // retrieve value from buffer
75 displayState("Consumer reads " + readValue);
76
77
78
79 }
80 finally
81 {
82
83 }
84
85 return readValue;
86 }
87
88 // display current operation and buffer state
89 private void displayState(String operation)
90 {
91 try
92 {
93
94 System.out.printf("%-40s%d\t\t%b%n%n", operation, buffer,
95 occupied);
96 }
97 finally
98 {
99
100 }
101 }
102 } // end class SynchronizedBuffer

Fig. 23.20 | Synchronizing access to a shared integer using the Lock and Condition
interfaces. (Part 2 of 2.)

accessLock.lock(); // lock this object

canRead.await(); // wait until buffer is full

// signal any threads waiting for buffer to be empty
canWrite.signalAll();

accessLock.unlock(); // unlock this object

accessLock.lock(); // lock this object

accessLock.unlock(); // unlock this objects

23.9 The Lock and Condition Interfaces 1007

Line 23 in method blockingPut calls method lock on the SynchronizedBuffer’s
accessLock. If the lock is available (i.e., no other thread has acquired it), this thread now
owns the lock and the thread continues. If the lock is unavailable (i.e., it’s held by another
thread), method lock waits until the lock is released. After the lock is acquired, lines 26–
46 execute. Line 29 tests occupied to determine whether buffer is full. If it is, lines 31–
32 display a message indicating that the thread will wait. Line 33 calls Condition method
await on the canWrite condition object, which temporarily releases the Synchronized-
Buffer’s Lock and waits for a signal from the Consumer that buffer is available for writing.
When buffer is available, the method proceeds, writing to buffer (line 36), setting occu-
pied to true (line 40) and displaying a message indicating that the producer wrote a value
(line 42). Line 45 calls Condition method signal on condition object canRead to notify
the waiting Consumer (if there is one) that the buffer has new data to be read. Line 49 calls
method unlock from a finally block to release the lock and allow the Consumer to pro-
ceed.

Line 57 of method blockingGet (lines 54–86) calls method lock to acquire the Lock.
This method waits until the Lock is available. Once the Lock is acquired, line 63 tests
whether occupied is false, indicating that the buffer is empty. If so, line 67 calls method
await on condition object canRead. Recall that method signal is called on variable can-
Read in the blockingPut method (line 45). When the Condition object is signaled, the
blockingGet method continues. Lines 72–74 set occupied to false, store the value of
buffer in readValue and output the readValue. Then line 78 signals the condition object
canWrite. This awakens the Producer if it’s indeed waiting for the buffer to be emptied.
Line 82 calls method unlock from a finally block to release the lock, and line 85 returns
readValue to the caller.

Class SharedBufferTest2
Class SharedBufferTest2 (Fig. 23.21) is identical to that of Fig. 23.17. Study the outputs
in Fig. 23.21. Observe that every integer produced is consumed exactly once—no values are
lost, and no values are consumed more than once. The Lock and Condition objects ensure
that the Producer and Consumer cannot perform their tasks unless it’s their turn. The Pro-
ducer must go first, the Consumer must wait if the Producer has not produced since the
Consumer last consumed and the Producer must wait if the Consumer has not yet con-
sumed the value that the Producer most recently produced. Execute this program several
times to confirm that every integer produced is consumed exactly once. In the sample out-
put, note the highlighted lines indicating when the Producer and Consumer must wait to
perform their respective tasks.

Common Programming Error 23.3
Forgetting to signal a waiting thread is a logic error. The thread will remain in the wait-
ing state, which will prevent it from proceeding. Such waiting can lead to indefinite post-
ponement or deadlock.

1 // Fig. 23.21: SharedBufferTest2.java
2 // Two threads manipulating a synchronized buffer.
3 import java.util.concurrent.ExecutorService;

Fig. 23.21 | Two threads manipulating a synchronized buffer. (Part 1 of 3.)

1008 Chapter 23 Concurrency

4 import java.util.concurrent.Executors;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedBufferTest2
8 {
9 public static void main(String[] args) throws InterruptedException

10 {
11 // create new thread pool with two threads
12 ExecutorService executorService = Executors.newCachedThreadPool();
13
14 // create SynchronizedBuffer to store ints
15 Buffer sharedLocation = new SynchronizedBuffer();
16
17 System.out.printf("%-40s%s\t\t%s%n%-40s%s%n%n", "Operation",
18 "Buffer", "Occupied", "---------", "------\t\t--------");
19
20 // execute the Producer and Consumer tasks
21 executorService.execute(new Producer(sharedLocation));
22 executorService.execute(new Consumer(sharedLocation));
23
24 executorService.shutdown();
25 executorService.awaitTermination(1, TimeUnit.MINUTES);
26 }
27 } // end class SharedBufferTest2

Operation Buffer Occupied
--------- ------ --------

Producer writes 1 1 true

Consumer reads 1 1 false

Producer writes 2 2 true

Consumer reads 2 2 false

Producer writes 3 3 true

Consumer reads 3 3 false

Producer writes 4 4 true

Consumer reads 4 4 false

Fig. 23.21 | Two threads manipulating a synchronized buffer. (Part 2 of 3.)

Producer tries to write.
Buffer full. Producer waits. 1 true

Producer tries to write.
Buffer full. Producer waits. 2 true

Consumer tries to read.
Buffer empty. Consumer waits. 4 false

23.10 Concurrent Collections 1009

23.10 Concurrent Collections
In Chapter 16, we introduced various collections from the Java Collections API. We also
mentioned that you can obtain synchronized versions of those collections to allow only one
thread at a time to access a collection that might be shared among several threads. The col-
lections from the java.util.concurrent package are specifically designed and optimized
for sharing collections among multiple threads.

Figure 23.22 lists the many concurrent collections in package java.util.concur-
rent. The entries for ConcurrentHashMap and LinkedBlockingQueue are shown in bold
because these are by far the most frequently used concurrent collections. Like the collec-
tions introduced in Chapter 16, the concurrent collections have been enhanced to support
lambdas. However, rather than providing methods to support streams, the concurrent col-
lections provide their own implementations of various stream-like operations—e.g., Con-
currentHashMap has methods forEach, reduce and search—that are designed and
optimized for concurrent collections that are shared among threads. For more information
on the concurrent collections, visit

Producer writes 5 5 true

Consumer reads 5 5 false

Producer writes 6 6 true

Consumer reads 6 6 false

Producer writes 7 7 true

Consumer reads 7 7 false

Producer writes 8 8 true

Consumer reads 8 8 false

Producer writes 9 9 true

Consumer reads 9 9 false

Producer writes 10 10 true

Producer done producing
Terminating Producer
Consumer reads 10 10 false

Consumer read values totaling 55
Terminating Consumer

Fig. 23.21 | Two threads manipulating a synchronized buffer. (Part 3 of 3.)

Consumer tries to read.
Buffer empty. Consumer waits. 5 false

1010 Chapter 23 Concurrency

Java SE 7:
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
 package-summary.html
Java SE 8
http://download.java.net/jdk8/docs/api/java/util/concurrent/
 package-summary.html

Collection Description

ArrayBlockingQueue A fixed-size queue that supports the producer/consumer relationship—
possibly with many producers and consumers.

ConcurrentHashMap A hash-based map (similar to the HashMap introduced in Chapter 16)
that allows an arbitrary number of reader threads and a limited num-
ber of writer threads. This and the LinkedBlockingQueue are by far the
most frequently used concurrent collections.

ConcurrentLinkedDeque A concurrent linked-list implementation of a double-ended queue.

ConcurrentLinkedQueue A concurrent linked-list implementation of a queue that can grow
dynamically.

ConcurrentSkipListMap A concurrent map that is sorted by its keys.

ConcurrentSkipListSet A sorted concurrent set.

CopyOnWriteArrayList A thread-safe ArrayList. Each operation that modifies the collection
first creates a new copy of the contents. Used when the collection is tra-
versed much more frequently than the collection’s contents are modified.

CopyOnWriteArraySet A set that’s implemented using CopyOnWriteArrayList.

DelayQueue A variable-size queue containing Delayed objects. An object can be
removed only after its delay has expired.

LinkedBlockingDeque A double-ended blocking queue implemented as a linked list that can
optionally be fixed in size.

LinkedBlockingQueue A blocking queue implemented as a linked list that can optionally be
fixed in size. This and the ConcurrentHashMap are by far the most fre-
quently used concurrent collections.

LinkedTransferQueue A linked-list implementation of interface TransferQueue. Each producer
has the option of waiting for a consumer to take an element being
inserted (via method transfer) or simply placing the element into the
queue (via method put). Also provides overloaded method tryTransfer
to immediately transfer an element to a waiting consumer or to do so
within a specified timeout period. If the transfer cannot be completed,
the element is not placed in the queue. Typically used in applications
that pass messages between threads.

PriorityBlockingQueue A variable-length priority-based blocking queue (like a PriorityQueue).

SynchronousQueue [For experts.] A blocking queue implementation that does not have an
internal capacity. Each insert operation by one thread must wait for a
remove operation from another thread and vice versa.

Fig. 23.22 | Concurrent collections summary (package java.util.concurrent).

23.11 Multithreading with GUI: SwingWorker 1011

23.11 Multithreading with GUI: SwingWorker
Swing applications present a unique set of challenges for multithreaded programming. All
Swing applications have a single thread, called the event dispatch thread, to handle inter-
actions with the application’s GUI components. Typical interactions include updating
GUI components or processing user actions such as mouse clicks. All tasks that require inter-
action with an application’s GUI are placed in an event queue and are executed sequentially
by the event dispatch thread.

Swing GUI components are not thread safe—they cannot be manipulated by multiple
threads without the risk of incorrect results that might corrupt the GUI. Unlike the other
examples presented in this chapter, thread safety in GUI applications is achieved not by
synchronizing thread actions, but by ensuring that Swing components are accessed from only
the event dispatch thread. This technique is called thread confinement. Allowing just one
thread to access non-thread-safe objects eliminates the possibility of corruption due to
multiple threads accessing these objects concurrently.

It’s acceptable to perform brief calculations on the event dispatch thread in sequence
with GUI component manipulations. If an application must perform a lengthy computa-
tion in response to a user interaction, the event dispatch thread cannot attend to other
tasks in the event queue while the thread is tied up in that computation. This causes the
GUI components to become unresponsive. It’s preferable to handle a long-running com-
putation in a separate thread, freeing the event dispatch thread to continue managing
other GUI interactions. Of course, you must update the GUI with the computation’s
results from the event dispatch thread, rather than from the worker thread that performed
the computation.

Class SwingWorker
Class SwingWorker (in package javax.swing) enables you to perform an asynchronous
task in a worker thread (such as a long-running computation) then update Swing compo-
nents from the event dispatch thread based on the task’s results. SwingWorker implements
the Runnable interface, meaning that a SwingWorker object can be scheduled to execute in a
separate thread. The SwingWorker class provides several methods to simplify performing a
task in a worker thread and making its results available for display in a GUI. Some com-
mon SwingWorker methods are described in Fig. 23.23.

Method Description

doInBackground Defines a long computation and is called in a worker thread.
done Executes on the event dispatch thread when doInBackground returns.
execute Schedules the SwingWorker object to be executed in a worker thread.
get Waits for the computation to complete, then returns the result of the

computation (i.e., the return value of doInBackground).

publish Sends intermediate results from the doInBackground method to the pro-
cess method for processing on the event dispatch thread.

Fig. 23.23 | Commonly used SwingWorker methods. (Part 1 of 2.)

1012 Chapter 23 Concurrency

23.11.1 Performing Computations in a Worker Thread: Fibonacci
Numbers
In the next example, the user enters a number n and the program gets the nth Fibonacci
number, which we calculate using the recursive algorithm discussed in Section 18.5. Since
the algorithm is time consuming for large values, we use a SwingWorker object to perform
the calculation in a worker thread. The GUI also provides a separate set of components
that get the next Fibonacci number in the sequence with each click of a button, beginning
with fibonacci(1). This set of components performs its short computation directly in
the event dispatch thread. This program is capable of producing up to the 92nd Fibonacci
number—subsequent values are outside the range that can be represented by a long. Recall
that you can use class BigInteger to represent arbitrarily large integer values.

Class BackgroundCalculator (Fig. 23.24) performs the recursive Fibonacci calcula-
tion in a worker thread. This class extends SwingWorker (line 8), overriding the methods
doInBackground and done. Method doInBackground (lines 21–24) computes the nth
Fibonacci number in a worker thread and returns the result. Method done (lines 27–43)
displays the result in a JLabel.

process Receives intermediate results from the publish method and processes
these results on the event dispatch thread.

setProgress Sets the progress property to notify any property change listeners on the
event dispatch thread of progress bar updates.

1 // Fig. 23.24: BackgroundCalculator.java
2 // SwingWorker subclass for calculating Fibonacci numbers
3 // in a background thread.
4 import javax.swing.SwingWorker;
5 import javax.swing.JLabel;
6 import java.util.concurrent.ExecutionException;
7
8 public class BackgroundCalculator extends SwingWorker<Long, Object>
9 {

10 private final int n; // Fibonacci number to calculate
11 private final JLabel resultJLabel; // JLabel to display the result
12
13 // constructor
14 public BackgroundCalculator(int n, JLabel resultJLabel)
15 {
16 this.n = n;
17 this.resultJLabel = resultJLabel;
18 }

Fig. 23.24 | SwingWorker subclass for calculating Fibonacci numbers in a background thread.
(Part 1 of 2.)

Method Description

Fig. 23.23 | Commonly used SwingWorker methods. (Part 2 of 2.)

23.11 Multithreading with GUI: SwingWorker 1013

SwingWorker is a generic class. In line 8, the first type parameter is Long and the second
is Object. The first type parameter indicates the type returned by the doInBackground
method; the second indicates the type that’s passed between the publish and process
methods to handle intermediate results. Since we do not use publish and process in this
example, we simply use Object as the second type parameter. We discuss publish and
process in Section 23.11.2.

A BackgroundCalculator object can be instantiated from a class that controls a GUI.
A BackgroundCalculator maintains instance variables for an integer that represents the
Fibonacci number to be calculated and a JLabel that displays the results of the calculation
(lines 10–11). The BackgroundCalculator constructor (lines 14–18) initializes these
instance variables with the arguments that are passed to the constructor.

19
20 // long-running code to be run in a worker thread
21 public Long doInBackground()
22 {
23 return nthFib = fibonacci(n);
24 }
25
26 // code to run on the event dispatch thread when doInBackground returns
27 protected void done()
28 {
29 try
30 {
31
32
33 }
34 catch (InterruptedException ex)
35 {
36 resultJLabel.setText("Interrupted while waiting for results.");
37 }
38 catch (ExecutionException ex)
39 {
40 resultJLabel.setText(
41 "Error encountered while performing calculation.");
42 }
43 }
44
45 // recursive method fibonacci; calculates nth Fibonacci number
46 public long fibonacci(long number)
47 {
48 if (number == 0 || number == 1)
49 return number;
50 else
51 return fibonacci(number - 1) + fibonacci(number - 2);
52 }
53 } // end class BackgroundCalculator

Fig. 23.24 | SwingWorker subclass for calculating Fibonacci numbers in a background thread.
(Part 2 of 2.)

// get the result of doInBackground and display it
resultJLabel.setText(get().toString());

1014 Chapter 23 Concurrency

When method execute is called on a BackgroundCalculator object, the object is
scheduled for execution in a worker thread. Method doInBackground is called from the
worker thread and invokes the fibonacci method (lines 46–52), passing instance variable
n as an argument (line 23). Method fibonacci uses recursion to compute the Fibonacci
of n. When fibonacci returns, method doInBackground returns the result.

After doInBackground returns, method done is called from the event dispatch thread.
This method attempts to set the result JLabel to the return value of doInBackground by
calling method get to retrieve this return value (line 32). Method get waits for the result to
be ready if necessary, but since we call it from method done, the computation will be com-
plete before get is called. Lines 34–37 catch InterruptedException if the current thread is
interrupted while waiting for get to return. This exception will not occur in this example
since the calculation will have already completed by the time get is called. Lines 38–42 catch
ExecutionException, which is thrown if an exception occurs during the computation.

Class FibonacciNumbers
Class FibonacciNumbers (Fig. 23.25) displays a window containing two sets of GUI com-
ponents—one set to compute a Fibonacci number in a worker thread and another to get
the next Fibonacci number in response to the user’s clicking a JButton. The constructor
(lines 38–109) places these components in separate titled JPanels. Lines 46–47 and 78–
79 add two JLabels, a JTextField and a JButton to the workerJPanel to allow the user
to enter an integer whose Fibonacci number will be calculated by the BackgroundWorker.
Lines 84–85 and 103 add two JLabels and a JButton to the eventThreadJPanel to allow
the user to get the next Fibonacci number in the sequence. Instance variables n1 and n2
contain the previous two Fibonacci numbers in the sequence and are initialized to 0 and
1, respectively (lines 29–30). Instance variable count stores the most recently computed
sequence number and is initialized to 1 (line 31). The two JLabels display count and n2
initially, so that the user will see the text Fibonacci of 1: 1 in the eventThreadJPanel
when the GUI starts.

Software Engineering Observation 23.8
Any GUI components that will be manipulated by SwingWorker methods, such as
components that will be updated from methods process or done, should be passed to the
SwingWorker subclass’s constructor and stored in the subclass object. This gives these
methods access to the GUI components they’ll manipulate.

1 // Fig. 23.25: FibonacciNumbers.java
2 // Using SwingWorker to perform a long calculation with
3 // results displayed in a GUI.
4 import java.awt.GridLayout;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9 import javax.swing.JPanel;

10 import javax.swing.JLabel;

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 1 of 4.)

23.11 Multithreading with GUI: SwingWorker 1015

11 import javax.swing.JTextField;
12 import javax.swing.border.TitledBorder;
13 import javax.swing.border.LineBorder;
14 import java.awt.Color;
15 import java.util.concurrent.ExecutionException;
16
17 public class FibonacciNumbers extends JFrame
18 {
19 // components for calculating the Fibonacci of a user-entered number
20 private final JPanel workerJPanel =
21 new JPanel(new GridLayout(2, 2, 5, 5));
22 private final JTextField numberJTextField = new JTextField();
23 private final JButton goJButton = new JButton("Go");
24 private final JLabel fibonacciJLabel = new JLabel();
25
26 // components and variables for getting the next Fibonacci number
27 private final JPanel eventThreadJPanel =
28 new JPanel(new GridLayout(2, 2, 5, 5));
29 private long n1 = 0; // initialize with first Fibonacci number
30 private long n2 = 1; // initialize with second Fibonacci number
31 private int count = 1; // current Fibonacci number to display
32 private final JLabel nJLabel = new JLabel("Fibonacci of 1: ");
33 private final JLabel nFibonacciJLabel =
34 new JLabel(String.valueOf(n2));
35 private final JButton nextNumberJButton = new JButton("Next Number");
36
37 // constructor
38 public FibonacciNumbers()
39 {
40 super("Fibonacci Numbers");
41 setLayout(new GridLayout(2, 1, 10, 10));
42
43 // add GUI components to the SwingWorker panel
44 workerJPanel.setBorder(new TitledBorder(
45 new LineBorder(Color.BLACK), "With SwingWorker"));
46 workerJPanel.add(new JLabel("Get Fibonacci of:"));
47 workerJPanel.add(numberJTextField);
48 goJButton.addActionListener(
49 new ActionListener()
50 {
51 public void actionPerformed(ActionEvent event)
52 {
53 int n;
54
55 try
56 {
57 // retrieve user's input as an integer
58 n = Integer.parseInt(numberJTextField.getText());
59 }

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 2 of 4.)

1016 Chapter 23 Concurrency

60 catch(NumberFormatException ex)
61 {
62 // display an error message if the user did not
63 // enter an integer
64 fibonacciJLabel.setText("Enter an integer.");
65 return;
66 }
67
68 // indicate that the calculation has begun
69 fibonacciJLabel.setText("Calculating...");
70
71
72
73
74
75 }
76 } // end anonymous inner class
77); // end call to addActionListener
78 workerJPanel.add(goJButton);
79 workerJPanel.add(fibonacciJLabel);
80
81 // add GUI components to the event-dispatching thread panel
82 eventThreadJPanel.setBorder(new TitledBorder(
83 new LineBorder(Color.BLACK), "Without SwingWorker"));
84 eventThreadJPanel.add(nJLabel);
85 eventThreadJPanel.add(nFibonacciJLabel);
86 nextNumberJButton.addActionListener(
87 new ActionListener()
88 {
89 public void actionPerformed(ActionEvent event)
90 {
91 // calculate the Fibonacci number after n2
92 long temp = n1 + n2;
93 n1 = n2;
94 n2 = temp;
95 ++count;
96
97 // display the next Fibonacci number
98 nJLabel.setText("Fibonacci of " + count + ": ");
99 nFibonacciJLabel.setText(String.valueOf(n2));
100 }
101 } // end anonymous inner class
102); // end call to addActionListener
103 eventThreadJPanel.add(nextNumberJButton);
104
105 add(workerJPanel);
106 add(eventThreadJPanel);
107 setSize(275, 200);
108 setVisible(true);
109 } // end constructor

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 3 of 4.)

// create a task to perform calculation in background
BackgroundCalculator task =
 new BackgroundCalculator(n, fibonacciJLabel);
task.execute(); // execute the task

23.11 Multithreading with GUI: SwingWorker 1017

Lines 48–77 register the event handler for the goJButton. If the user clicks this
JButton, line 58 gets the value entered in the numberJTextField and attempts to parse it
as an integer. Lines 72–73 create a new BackgroundCalculator object, passing in the user-
entered value and the fibonacciJLabel that’s used to display the calculation’s results.
Line 74 calls method execute on the BackgroundCalculator, scheduling it for execution
in a separate worker thread. Method execute does not wait for the BackgroundCalcu-
lator to finish executing. It returns immediately, allowing the GUI to continue pro-
cessing other events while the computation is performed.

If the user clicks the nextNumberJButton in the eventThreadJPanel, the event handler
registered in lines 86–102 executes. Lines 92–95 add the previous two Fibonacci numbers
stored in n1 and n2 to determine the next number in the sequence, update n1 and n2 to their
new values and increment count. Then lines 98–99 update the GUI to display the next
number. The code for these calculations is in method actionPerformed, so they’re per-
formed on the event dispatch thread. Handling such short computations in the event dis-

110
111 // main method begins program execution
112 public static void main(String[] args)
113 {
114 FibonacciNumbers application = new FibonacciNumbers();
115 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
116 }
117 } // end class FibonacciNumbers

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 4 of 4.)

a) Begin calculating Fibonacci of 40 in the
background

b) Calculating other Fibonacci values while
Fibonacci of 40 continues calculating

c) Fibonacci of 40 calculation finishes

1018 Chapter 23 Concurrency

patch thread does not cause the GUI to become unresponsive, as with the recursive
algorithm for calculating the Fibonacci of a large number. Because the longer Fibonacci
computation is performed in a separate worker thread using the SwingWorker, it’s possible
to get the next Fibonacci number while the recursive computation is still in progress.

23.11.2 Processing Intermediate Results: Sieve of Eratosthenes
We’ve presented an example that uses the SwingWorker class to execute a long process in
a background thread and update the GUI when the process is finished. We now present an
example of updating the GUI with intermediate results before the long process completes.
Figure 23.26 presents class PrimeCalculator, which extends SwingWorker to compute
the first n prime numbers in a worker thread. In addition to the doInBackground and done
methods used in the previous example, this class uses SwingWorker methods publish,
process and setProgress. In this example, method publish sends prime numbers to
method process as they’re found, method process displays these primes in a GUI com-
ponent and method setProgress updates the progress property. We later show how to
use this property to update a JProgressBar.

1 // Fig. 23.26: PrimeCalculator.java
2 // Calculates the first n primes, displaying them as they are found.
3 import javax.swing.JTextArea;
4 import javax.swing.JLabel;
5 import javax.swing.JButton;
6 import javax.swing.SwingWorker;
7 import java.security.SecureRandom;
8 import java.util.Arrays;
9 import java.util.List;

10 import java.util.concurrent.CancellationException;
11 import java.util.concurrent.ExecutionException;
12
13 public class PrimeCalculator extends SwingWorker<Integer, Integer>
14 {
15 private static final SecureRandom generator = new SecureRandom();
16 private final JTextArea intermediateJTextArea; // displays found primes
17 private final JButton getPrimesJButton;
18 private final JButton cancelJButton;
19 private final JLabel statusJLabel; // displays status of calculation
20 private final boolean[] primes; // boolean array for finding primes
21
22 // constructor
23 public PrimeCalculator(int max, JTextArea intermediateJTextArea,
24 JLabel statusJLabel, JButton getPrimesJButton,
25 JButton cancelJButton)
26 {
27 this.intermediateJTextArea = intermediateJTextArea;
28 this.statusJLabel = statusJLabel;
29 this.getPrimesJButton = getPrimesJButton;
30 this.cancelJButton = cancelJButton;
31 primes = new boolean[max];
32

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 1 of 3.)

23.11 Multithreading with GUI: SwingWorker 1019

33 Arrays.fill(primes, true); // initialize all primes elements to true
34 }
35
36 // finds all primes up to max using the Sieve of Eratosthenes
37 public Integer doInBackground()
38 {
39 int count = 0; // the number of primes found
40
41 // starting at the third value, cycle through the array and put
42 // false as the value of any greater number that is a multiple
43 for (int i = 2; i < primes.length; i++)
44 {
45 if (isCancelled()) // if calculation has been canceled
46 return count;
47 else
48 {
49
50
51 try
52 {
53 Thread.sleep(generator.nextInt(5));
54 }
55 catch (InterruptedException ex)
56 {
57 statusJLabel.setText("Worker thread interrupted");
58 return count;
59 }
60
61 if (primes[i]) // i is prime
62 {
63
64 ++count;
65
66 for (int j = i + i; j < primes.length; j += i)
67 primes[j] = false; // i is not prime
68 }
69 }
70 }
71
72 return count;
73 }
74
75
76
77
78
79
80
81
82 // code to execute when doInBackground completes
83 protected void done()
84 {
85 getPrimesJButton.setEnabled(true); // enable Get Primes button

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 2 of 3.)

setProgress(100 * (i + 1) / primes.length);

publish(i); // make i available for display in prime list

// displays published values in primes list
protected void process(List<Integer> publishedVals)
{
 for (int i = 0; i < publishedVals.size(); i++)
 intermediateJTextArea.append(publishedVals.get(i) + "\n");
}

1020 Chapter 23 Concurrency

Class PrimeCalculator extends SwingWorker (line 13), with the first type parameter
indicating the return type of method doInBackground and the second indicating the type
of intermediate results passed between methods publish and process. In this case, both
type parameters are Integers. The constructor (lines 23–34) takes as arguments an integer
that indicates the upper limit of the prime numbers to locate, a JTextArea used to display
primes in the GUI, one JButton for initiating a calculation and one for canceling it, and
a JLabel used to display the status of the calculation.

Sieve of Eratosthenes
Line 33 initializes the elements of the boolean array primes to true with Arrays method
fill. PrimeCalculator uses this array and the Sieve of Eratosthenes algorithm (described
in Exercise 7.27) to find all primes less than max. The Sieve of Eratosthenes takes a list of
integers and, beginning with the first prime number, filters out all multiples of that prime.
It then moves to the next prime, which will be the next number that’s not yet filtered out,
and eliminates all of its multiples. It continues until the end of the list is reached and all
nonprimes have been filtered out. Algorithmically, we begin with element 2 of the bool-
ean array and set the cells corresponding to all values that are multiples of 2 to false to
indicate that they’re divisible by 2 and thus not prime. We then move to the next array
element, check whether it’s true, and if so set all of its multiples to false to indicate that
they’re divisible by the current index. When the whole array has been traversed in this way,
all indices that contain true are prime, as they have no divisors.

Method doInBackground
In method doInBackground (lines 37–73), the control variable i for the loop (lines 43–
70) controls the current index for implementing the Sieve of Eratosthenes. Line 45 calls
the inherited SwingWorker method isCancelled to determine whether the user has
clicked the Cancel button. If isCancelled returns true, method doInBackground returns
the number of primes found so far (line 46) without finishing the computation.

If the calculation isn’t canceled, line 49 calls setProgress to update the percentage of
the array that’s been traversed so far. Line 53 puts the currently executing thread to sleep
for up to 4 milliseconds. We discuss the reason for this shortly. Line 61 tests whether the
element of array primes at the current index is true (and thus prime). If so, line 63 passes

86 cancelJButton.setEnabled(false); // disable Cancel button
87
88 try
89 {
90 // retrieve and display doInBackground return value
91 statusJLabel.setText("Found " + get() + " primes.");
92 }
93 catch (InterruptedException | ExecutionException |
94 CancellationException ex)
95 {
96 statusJLabel.setText(ex.getMessage());
97 }
98 }
99 } // end class PrimeCalculator

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 3 of 3.)

23.11 Multithreading with GUI: SwingWorker 1021

the index to method publish so that it can be displayed as an intermediate result in the
GUI and line 64 increments the number of primes found. Lines 66–67 set all multiples of
the current index to false to indicate that they’re not prime. When the entire array has
been traversed, line 72 returns the number of primes found.

Method process
Lines 76–80 declare method process, which executes in the event dispatch thread and re-
ceives its argument publishedVals from method publish. The passing of values between
publish in the worker thread and process in the event dispatch thread is asynchronous;
process might not be invoked for every call to publish. All Integers published since the
last call to process are received as a List by method process. Lines 78–79 iterate through
this list and display the published values in a JTextArea. Because the computation in
method doInBackground progresses quickly, publishing values often, updates to the
JTextArea can pile up on the event dispatch thread, causing the GUI to become sluggish.
In fact, when searching for a large number of primes, the event dispatch thread may receive
so many requests in quick succession to update the JTextArea that it runs out of memory
in its event queue. This is why we put the worker thread to sleep for a few milliseconds be-
tween calls to publish. The calculation is slowed just enough to allow the event dispatch
thread to keep up with requests to update the JTextArea with new primes, enabling the
GUI to update smoothly and remain responsive.

Method done
Lines 83–98 define method done. When the calculation is finished or canceled, method
done enables the Get Primes button and disables the Cancel button (lines 85–86). Line 91
gets and displays the return value—the number of primes found—from method doIn-
Background. Lines 93–97 catch the exceptions thrown by method get and display an ap-
propriate message in the statusJLabel.

Class FindPrimes
Class FindPrimes (Fig. 23.27) displays a JTextField that allows the user to enter a num-
ber, a JButton to begin finding all primes less than that number and a JTextArea to dis-
play the primes. A JButton allows the user to cancel the calculation, and a JProgressBar
shows the calculation’s progress. The constructor (lines 32–125) sets up the GUI.

1 // Fig. 23.27: FindPrimes.java
2 // Using a SwingWorker to display prime numbers and update a JProgressBar
3 // while the prime numbers are being calculated.
4 import javax.swing.JFrame;
5 import javax.swing.JTextField;
6 import javax.swing.JTextArea;
7 import javax.swing.JButton;
8 import javax.swing.JProgressBar;
9 import javax.swing.JLabel;

10 import javax.swing.JPanel;
11 import javax.swing.JScrollPane;
12 import javax.swing.ScrollPaneConstants;

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 1 of 4.)

1022 Chapter 23 Concurrency

13 import java.awt.BorderLayout;
14 import java.awt.GridLayout;
15 import java.awt.event.ActionListener;
16 import java.awt.event.ActionEvent;
17 import java.util.concurrent.ExecutionException;
18 import java.beans.PropertyChangeListener;
19 import java.beans.PropertyChangeEvent;
20
21 public class FindPrimes extends JFrame
22 {
23 private final JTextField highestPrimeJTextField = new JTextField();
24 private final JButton getPrimesJButton = new JButton("Get Primes");
25 private final JTextArea displayPrimesJTextArea = new JTextArea();
26 private final JButton cancelJButton = new JButton("Cancel");
27 private final JProgressBar progressJProgressBar = new JProgressBar();
28 private final JLabel statusJLabel = new JLabel();
29 private PrimeCalculator calculator;
30
31 // constructor
32 public FindPrimes()
33 {
34 super("Finding Primes with SwingWorker");
35 setLayout(new BorderLayout());
36
37 // initialize panel to get a number from the user
38 JPanel northJPanel = new JPanel();
39 northJPanel.add(new JLabel("Find primes less than: "));
40 highestPrimeJTextField.setColumns(5);
41 northJPanel.add(highestPrimeJTextField);
42 getPrimesJButton.addActionListener(
43 new ActionListener()
44 {
45 public void actionPerformed(ActionEvent e)
46 {
47 progressJProgressBar.setValue(0); // reset JProgressBar
48 displayPrimesJTextArea.setText(""); // clear JTextArea
49 statusJLabel.setText(""); // clear JLabel
50
51 int number; // search for primes up through this value
52
53 try
54 {
55 // get user input
56 number = Integer.parseInt(
57 highestPrimeJTextField.getText());
58 }
59 catch (NumberFormatException ex)
60 {
61 statusJLabel.setText("Enter an integer.");
62 return;
63 }
64

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 2 of 4.)

23.11 Multithreading with GUI: SwingWorker 1023

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 // disable Get Primes button and enable Cancel button
88 getPrimesJButton.setEnabled(false);
89 cancelJButton.setEnabled(true);
90
91
92 }
93 } // end anonymous inner class
94); // end call to addActionListener
95 northJPanel.add(getPrimesJButton);
96
97 // add a scrollable JList to display results of calculation
98 displayPrimesJTextArea.setEditable(false);
99 add(new JScrollPane(displayPrimesJTextArea,
100 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
101 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER));
102
103 // initialize a panel to display cancelJButton,
104 // progressJProgressBar, and statusJLabel
105 JPanel southJPanel = new JPanel(new GridLayout(1, 3, 10, 10));
106 cancelJButton.setEnabled(false);
107 cancelJButton.addActionListener(
108 new ActionListener()
109 {
110 public void actionPerformed(ActionEvent e)
111 {
112
113 }
114 } // end anonymous inner class
115); // end call to addActionListener

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 3 of 4.)

// construct a new PrimeCalculator object
calculator = new PrimeCalculator(number,
 displayPrimesJTextArea, statusJLabel, getPrimesJButton,
 cancelJButton);

// listen for progress bar property changes
calculator.addPropertyChangeListener(
 new PropertyChangeListener()
 {
 public void propertyChange(PropertyChangeEvent e)
 {
 // if the changed property is progress,
 // update the progress bar
 if (e.getPropertyName().equals("progress"))
 {
 int newValue = (Integer) e.getNewValue();
 progressJProgressBar.setValue(newValue);
 }
 }
 } // end anonymous inner class
); // end call to addPropertyChangeListener

calculator.execute(); // execute the PrimeCalculator object

calculator.cancel(true); // cancel the calculation

1024 Chapter 23 Concurrency

Lines 42–94 register the event handler for the getPrimesJButton. When the user
clicks this JButton, lines 47–49 reset the JProgressBar and clear the displayPrimes-
JTextArea and the statusJLabel. Lines 53–63 parse the value in the JTextField and dis-
play an error message if the value is not an integer. Lines 66–68 construct a new
PrimeCalculator object, passing as arguments the integer the user entered, the display-
PrimesJTextArea for displaying the primes, the statusJLabel and the two JButtons.

Lines 71–85 register a PropertyChangeListener for the PrimeCalculator object.
PropertyChangeListener is an interface from package java.beans that defines a single
method, propertyChange. Every time method setProgress is invoked on a PrimeCalcu-
lator, the PrimeCalculator generates a PropertyChangeEvent to indicate that the prog-
ress property has changed. Method propertyChange listens for these events. Line 78 tests
whether a given PropertyChangeEvent indicates a change to the progress property. If so,
line 80 gets the new value of the property and line 81 updates the JProgressBar with the
new progress property value.

The Get Primes JButton is disabled (line 88) so only one calculation that updates the
GUI can execute at a time, and the Cancel JButton is enabled (line 89) to allow the user

116 southJPanel.add(cancelJButton);
117 progressJProgressBar.setStringPainted(true);
118 southJPanel.add(progressJProgressBar);
119 southJPanel.add(statusJLabel);
120
121 add(northJPanel, BorderLayout.NORTH);
122 add(southJPanel, BorderLayout.SOUTH);
123 setSize(350, 300);
124 setVisible(true);
125 } // end constructor
126
127 // main method begins program execution
128 public static void main(String[] args)
129 {
130 FindPrimes application = new FindPrimes();
131 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
132 } // end main
133 } // end class FindPrimes

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 4 of 4.)

23.12 sort/parallelSort Timings with the Java SE 8 Date/Time API 1025

to stop the computation before it completes. Line 91 executes the PrimeCalculator to
begin finding primes. If the user clicks the cancelJButton, the event handler registered at
lines 107–115 calls PrimeCalculator’s method cancel (line 112), which is inherited from
class SwingWorker, and the calculation returns early. The argument true to method
cancel indicates that the thread performing the task should be interrupted in an attempt
to cancel the task.

23.12 sort/parallelSort Timings with the Java SE 8
Date/Time API
In Section 7.15, we used class Arrays’s static method sort to sort an array and we in-
troduced static method parallelSort for sorting large arrays more efficiently on multi-
core systems. Figure 23.28 uses both methods to sort 15,000,000 element arrays of ran-
dom int values so that we can demonstrate parallelSort’s performance improvement of
over sort on a multi-core system (we ran this on a dual-core system).

1 // SortComparison.java
2 // Comparing performance of Arrays methods sort and parallelSort.
3 import java.time.Duration;
4 import java.time.Instant;
5 import java.text.NumberFormat;
6 import java.util.Arrays;
7 import java.security.SecureRandom;
8
9 public class SortComparison

10 {
11 public static void main(String[] args)
12 {
13 SecureRandom random = new SecureRandom();
14
15 // create array of random ints, then copy it
16 int[] array1 = random.ints(15_000_000).toArray();
17 int[] array2 = new int[array1.length];
18 System.arraycopy(array1, 0, array2, 0, array1.length);
19
20 // time the sorting of array1 with Arrays method sort
21 System.out.println("Starting sort");
22
23
24
25
26 // display timing results
27 long sortTime = Duration.between(sortStart, sortEnd).toMillis();
28 System.out.printf("Total time in milliseconds: %d%n%n", sortTime);
29
30 // time the sorting of array2 with Arrays method parallelSort
31 System.out.println("Starting parallelSort");
32

Fig. 23.28 | Comparing performance of Arrays methods sort and parallelSort. (Part 1 of 2.)

Instant sortStart = Instant.now();
Arrays.sort(array1);
Instant sortEnd = Instant.now();

Instant parallelSortStart = Instant.now();

1026 Chapter 23 Concurrency

Creating the Arrays
Line 16 uses SecureRandom method ints to create an IntStream of 15,000,000 random
int values, then calls IntStream method toArray to place the values into an array. Lines
17 and 18 copy the array so that the calls to both sort and parallelSort work with the
same set of values.

Timing Arrays Method sort with Date/Time API Classes Instant and Duration
Lines 22 and 24 each call class Instant’s static method now to get the current time before
and after the call to sort. To determine the difference between two Instants, line 27 uses
class Duration’s static method between, which returns a Duration object containing the
time difference. Next, we call Duration method toMillis to get the difference in milli-
seconds.

Timing Arrays Method parallelSort with Date/Time API Classes Instant and
Duration

Lines 32–34 time the call to Arrays method parallelSort. Then, lines 37–38 calculate
the difference between the Instants.

Displaying the Percentage Difference Between the Sorting Times
Lines 43–44 use a NumberFormat (package java.text) to format the ratio of the sort times
as a percentage. NumberFormat static method getPercentInstance returns a Number-
Format that’s used to format a number as a percentage. NumberFormat method format per-
forms the formatting. As you can see in the sample output, the sort method took over
400% more time to sort the 15,000,000 random int values.

33
34
35
36 // display timing results
37 long parallelSortTime =
38 ;
39 System.out.printf("Total time in milliseconds: %d%n%n",
40 parallelSortTime);
41
42 // display time difference as a percentage
43
44
45 System.out.printf("%nsort took %s more time than parallelSort%n",
46 percentage);
47 }
48 } // end class SortComparison

Starting sort
Total time in milliseconds: 1319

Starting parallelSort
Total time in milliseconds: 323

sort took 408% more time than parallelSort

Fig. 23.28 | Comparing performance of Arrays methods sort and parallelSort. (Part 2 of 2.)

Arrays.parallelSort(array2);
Instant parallelSortEnd = Instant.now();

Duration.between(parallelSortStart, parallelSortEnd).toMillis()

String percentage = NumberFormat.getPercentInstance().format(
 (double) sortTime / parallelSortTime);

23.13 Java SE 8: Sequential vs. Parallel Streams 1027

Other Parallel Array Operations
In addition to method parallelSort, class Arrays now contains methods paral-
lelSetAll and parallelPrefix, which perform the following tasks:

• parallelSetAll—Fills an array with values produced by a generator function
that receives an int and returns a value of type int, long or double. Depending
on which overload of method parallelSetAll is used, the generator function is
an object of a class that implements IntToDoubleFunction (for double arrays),
IntUnaryOperator (for int arrays), IntToLongFunction (for long arrays) or
IntFunction (for arrays of any non-primitive type).

• parallelPrefix—Applies a BinaryOperator to the current and previous array
elements and stores the result in the current element. For example, consider:

This call to parallelPrefix uses a BinaryOperator that adds two values. After
the call completes, the array contains 1, 3, 6, 10 and 15. Similarly, the following
call to parallelPrefix, uses a BinaryOperator that multiplies two values. After
the call completes, the array contains 1, 2, 6, 24 and 120:

23.13 Java SE 8: Sequential vs. Parallel Streams
In Chapter 17, you learned about Java SE 8 lambdas and streams. We mentioned that
streams are easy to parallelize, enabling programs to benefit from enhanced performance
on multi-core systems. Using the timing capabilities introduced in Section 23.12,
Fig. 23.29 demonstrates both sequential and parallel stream operations on a 10,000,000-
element array of random long values (created at line 17) to compare the performance.

 int[] values = {1, 2, 3, 4, 5};
 Arrays.parallelPrefix(values, (x, y) -> x + y);

 int[] values = {1, 2, 3, 4, 5};
 Arrays.parallelPrefix(values, (x, y) -> x * y);

1 // StreamStatisticsComparison.java
2 // Comparing performance of sequential and parallel stream operations.
3 import java.time.Duration;
4 import java.time.Instant;
5 import java.util.Arrays;
6 import java.util.LongSummaryStatistics;
7 import java.util.stream.LongStream;
8 import java.security.SecureRandom;
9

10 public class StreamStatisticsComparison
11 {
12 public static void main(String[] args)
13 {
14 SecureRandom random = new SecureRandom();
15
16 // create array of random long values
17 long[] values = random.longs(10_000_000, 1, 1001).toArray();

Fig. 23.29 | Comparing performance of sequential and parallel stream operations. (Part 1 of 3.)

1028 Chapter 23 Concurrency

18
19 // perform calculcations separately
20
21
22
23
24
25
26
27
28 // display results
29 System.out.println("Calculations performed separately");
30 System.out.printf(" count: %,d%n", count);
31 System.out.printf(" sum: %,d%n", sum);
32 System.out.printf(" min: %,d%n", min);
33 System.out.printf(" max: %,d%n", max);
34 System.out.printf(" average: %f%n", average);
35 System.out.printf("Total time in milliseconds: %d%n%n",
36 Duration.between(separateStart, separateEnd).toMillis());
37
38 // time sum operation with sequential stream
39 LongStream stream1 = Arrays.stream(values);
40 System.out.println("Calculating statistics on sequential stream");
41
42
43
44
45 // display results
46 displayStatistics(results1);
47 System.out.printf("Total time in milliseconds: %d%n%n",
48 Duration.between(sequentialStart, sequentialEnd).toMillis());
49
50 // time sum operation with parallel stream
51 LongStream stream2 = Arrays.stream(values).parallel();
52 System.out.println("Calculating statistics on parallel stream");
53
54
55
56
57 // display results
58 displayStatistics(results1);
59 System.out.printf("Total time in milliseconds: %d%n%n",
60 Duration.between(parallelStart, parallelEnd).toMillis());
61 }
62
63 // display's LongSummaryStatistics values
64 private static void displayStatistics(LongSummaryStatistics stats)
65 {
66 System.out.println("Statistics");
67 System.out.printf(" count: %,d%n", stats.getCount());
68 System.out.printf(" sum: %,d%n", stats.getSum());
69 System.out.printf(" min: %,d%n", stats.getMin());
70 System.out.printf(" max: %,d%n", stats.getMax());

Fig. 23.29 | Comparing performance of sequential and parallel stream operations. (Part 2 of 3.)

Instant separateStart = Instant.now();
long count = Arrays.stream(values).count();
long sum = Arrays.stream(values).sum();
long min = Arrays.stream(values).min().getAsLong();
long max = Arrays.stream(values).max().getAsLong();
double average = Arrays.stream(values).average().getAsDouble();
Instant separateEnd = Instant.now();

Instant sequentialStart = Instant.now();
LongSummaryStatistics results1 = stream1.summaryStatistics();
Instant sequentialEnd = Instant.now();

Instant parallelStart = Instant.now();
LongSummaryStatistics results2 = stream2.summaryStatistics();
Instant parallelEnd = Instant.now();

23.13 Java SE 8: Sequential vs. Parallel Streams 1029

Performing Stream Operations with Separate Passes of a Sequential Stream
Section 17.3 demonstrated various numerical operations on IntStreams. Lines 20–26 per-
form and time the count, sum, min, max and average stream operations each performed
individually on a LongStream returned by Arrays method stream. Lines 29–36 then dis-
play the results and the total time required to perform all five operations.

Performing Stream Operations with a Single Pass of a Sequential Stream
Lines 39–48 demonstrate the performance improvement you get by using LongStream
method summaryStatistics to determine the count, sum, minimum value, maximum
value and average in one pass of a sequential LongStream—all streams are sequential by de-
fault. This operation took approximately 40% of the time required to perform the five op-
erations separately.

Performing Stream Operations with a Single Pass of a Parallel Stream
Lines 51–60 demonstrate the performance improvement you get by using LongStream
method summaryStatistics on a parallel LongStream. To obtain a parallel stream that can
take advantage of multi-core processors, simply invoke method parallel on an existing
stream. As you can see from the sample output, performing the operations on a parallel
stream decreased the total time required even further—taking approximately 55% of the

71 System.out.printf(" average: %f%n", stats.getAverage());
72 }
73 } // end class StreamStatisticsComparison

Calculations performed separately
 count: 10,000,000
 sum: 5,003,695,285
 min: 1
 max: 1,000
 average: 500.369529
Total time in milliseconds: 173

Calculating statistics on sequential stream
Statistics
 count: 10,000,000
 sum: 5,003,695,285
 min: 1
 max: 1,000
 average: 500.369529
Total time in milliseconds: 69

Calculating statistics on parallel stream
Statistics
 count: 10,000,000
 sum: 5,003,695,285
 min: 1
 max: 1,000
 average: 500.369529
Total time in milliseconds: 38

Fig. 23.29 | Comparing performance of sequential and parallel stream operations. (Part 3 of 3.)

1030 Chapter 23 Concurrency

calculation time for the sequential LongStream and just 22% of the time required to per-
form the five operations separately.

23.14 (Advanced) Interfaces Callable and Future
Interface Runnable provides only the most basic functionality for multithreaded program-
ming. In fact, this interface has limitations. Suppose a Runnable is performing a long cal-
culation and the application wants to retrieve the result of that calculation. The run
method cannot return a value, so shared mutable data would be required to pass the value
back to the calling thread. As you now know, this would require thread synchronization.
The Callable interface (of package java.util.concurrent) fixes this limitation. The in-
terface declares a single method named call which returns a value representing the result
of the Callable’s task—such as the result of a long running calculation.

An application that creates a Callable likely wants to run it concurrently with other
Runnables and Callables. ExecutorService method submit executes its Callable argu-
ment and returns an object of type Future (of package java.util.concurrent), which
represents the Callable’s future result. The Future interface get method blocks the calling
thread, and waits for the Callable to complete and return its result. The interface also
provides methods that enable you to cancel a Callable’s execution, determine whether the
Callable was cancelled and determine whether the Callable completed its task.

Executing Aysnchronous Tasks with CompletableFuture
Java SE 8 introduces class CompletableFuture (package java.util.concurrent), which
implements the Future interface and enables you to asynchronously execute Runnables that
perform tasks or Suppliers that return values. Interface Supplier, like interface Callable,
is a functional interface with a single method (in this case, get) that receives no arguments
and returns a result. Class CompletableFuture provides many additional capabilities that for
advanced programmers, such as creating CompletableFutures without executing them im-
mediately, composing one or more CompletableFutures so that you can wait for any or all
of them to complete, executing code after a CompletableFuture completes and more.

Figure 23.30 performs two long-running calculations sequentially, then performs
them again asynchronously using CompletableFutures to demonstrate the performance
improvement from asynchronous execution on a multi-core system. For demonstration
purposes, our long-running calculation is performed by a recursive fibonacci method
(lines 73–79; similar to the one presented in Section 18.5). For larger Fibonacci values,
the recursive implementation can require significant computation time—in practice, it’s
much faster to calculate Fibonacci values using a loop.

1 // FibonacciDemo.java
2 // Fibonacci calculations performed synchronously and asynchronously
3 import java.time.Duration;
4 import java.text.NumberFormat;
5 import java.time.Instant;
6
7
8

Fig. 23.30 | Fibonacci calculations performed synchronously and asynchronously. (Part 1 of 4.)

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;

23.14 (Advanced) Interfaces Callable and Future 1031

9 // class that stores two Instants in time
10 class TimeData
11 {
12 public Instant start;
13 public Instant end;
14
15 // return total time in seconds
16 public double timeInSeconds()
17 {
18 return Duration.between(start, end).toMillis() / 1000.0;
19 }
20 } // end class TimeData
21
22 public class FibonacciDemo
23 {
24 public static void main(String[] args)
25
26 {
27 // perform synchronous fibonacci(45) and fibonacci(44) calculations
28 System.out.println("Synchronous Long Running Calculations");
29
30
31 double synchronousTime =
32 calculateTime(synchronousResult1, synchronousResult2);
33 System.out.printf(
34 " Total calculation time = %.3f seconds%n", synchronousTime);
35
36 // perform asynchronous fibonacci(45) and fibonacci(44) calculations
37 System.out.printf("%nAsynchronous Long Running Calculations%n");
38
39
40
41
42
43 // wait for results from the asynchronous operations
44
45
46 double asynchronousTime =
47 calculateTime(asynchronousResult1, asynchronousResult2);
48 System.out.printf(
49 " Total calculation time = %.3f seconds%n", asynchronousTime);
50
51 // display time difference as a percentage
52 String percentage = NumberFormat.getPercentInstance().format(
53 synchronousTime / asynchronousTime);
54 System.out.printf("%nSynchronous calculations took %s" +
55 " more time than the asynchronous calculations%n", percentage);
56 }
57
58 // executes function fibonacci asynchronously
59 private static TimeData startFibonacci(int n)
60 {

Fig. 23.30 | Fibonacci calculations performed synchronously and asynchronously. (Part 2 of 4.)

throws InterruptedException, ExecutionException

TimeData synchronousResult1 = startFibonacci(45);
TimeData synchronousResult2 = startFibonacci(44);

CompletableFuture<TimeData> futureResult1 =
 CompletableFuture.supplyAsync(() -> startFibonacci(45));
CompletableFuture<TimeData> futureResult2 =
 CompletableFuture.supplyAsync(() -> startFibonacci(44));

TimeData asynchronousResult1 = futureResult1.get();
TimeData asynchronousResult2 = futureResult2.get();

1032 Chapter 23 Concurrency

61 // create a TimeData object to store times
62 TimeData timeData = new TimeData();
63
64 System.out.printf(" Calculating fibonacci(%d)%n", n);
65 timeData.start = Instant.now();
66
67 timeData.end = Instant.now();
68 displayResult(n, fibonacciValue, timeData);
69 return timeData;
70 }
71
72 // recursive method fibonacci; calculates nth Fibonacci number
73 private static long fibonacci(long n)
74 {
75 if (n == 0 || n == 1)
76 return n;
77 else
78 return fibonacci(n - 1) + fibonacci(n - 2);
79 }
80
81 // display fibonacci calculation result and total calculation time
82 private static void displayResult(int n, long value, TimeData timeData)
83 {
84 System.out.printf(" fibonacci(%d) = %d%n", n, value);
85 System.out.printf(
86 " Calculation time for fibonacci(%d) = %.3f seconds%n",
87 n, timeData.timeInSeconds());
88 }
89
90 // display fibonacci calculation result and total calculation time
91 private static double calculateTime(TimeData result1, TimeData result2)
92 {
93 TimeData bothThreads = new TimeData();
94
95 // determine earlier start time
96 bothThreads.start = result1.start.compareTo(result2.start) < 0 ?
97 result1.start : result2.start;
98
99 // determine later end time
100 bothThreads.end = result1.end.compareTo(result2.end) > 0 ?
101 result1.end : result2.end;
102
103 return bothThreads.timeInSeconds();
104 }
105 } // end class FibonacciDemo

Synchronous Long Running Calculations
 Calculating fibonacci(45)
 fibonacci(45) = 1134903170
 Calculation time for fibonacci(45) = 5.884 seconds
 Calculating fibonacci(44)
 fibonacci(44) = 701408733

Fig. 23.30 | Fibonacci calculations performed synchronously and asynchronously. (Part 3 of 4.)

long fibonacciValue = fibonacci(n);

23.14 (Advanced) Interfaces Callable and Future 1033

Class TimeData
Class TimeData (lines 10–20) stores two Instants representing the start and end time of
a task, and provides method timeInSeconds to calculate the total time between them. We
use TimeData objects throughout this example to calculate the time required to perform
Fibonacci calculations.

Method startFibonacci for Performing and Timing Fibonacci Calculations
Method startFibonacci (lines 59–70) is called several times in main (lines 29, 30, 39 and
41) to initiate Fibonacci calculations and to calculate the time each calculation requires.
The method receives the Fibonacci number to calculate and performs the following tasks:

• Line 62 creates a TimeData object to store the calculation’s start and end times.

• Line 64 displays the Fibonacci number to be calculated.

• Line 65 stores the current time before method fibonacci is called.

• Line 66 calls method fibonacci to perform the calculation.

• Line 67 stores the current time after the call to fibonacci completes.

• Line 68 displays the result and the total time required for the calculation.

• Line 69 returns the TimeData object for use in method main.

Performing Fibonacci Calculations Synchronously
Method main (lines 24–56) first demonstrates synchronous Fibonacci calculations. Line
29 calls startFibonacci(45) to initiate the fibonacci(45) calculation and store the
TimeData object containing the calculation’s start and end times. When this call com-
pletes, line 30 calls startFibonacci(44) to initiate the fibonacci(44) calculation and
store its TimeData. Next, lines 31–32 pass both TimeData objects to method calculate-
Time (lines 91–104), which returns the total calculation time in seconds. Lines 33–34 dis-
play the total calculation time for the synchronous Fibonacci calculations.

Performing Fibonacci Calculations Asynchronously
Lines 38–41 in main launch the asynchronous Fibonacci calculations in separate threads.
CompletableFuture static method supplyAsync executes an asynchronous task that re-
turns a value. The method receives as its argument an object that implements interface Sup-

 Calculation time for fibonacci(44) = 3.605 seconds
 Total calculation time = 9.506 seconds

Asynchronous Long Running Calculations
 Calculating fibonacci(45)
 Calculating fibonacci(44)
 fibonacci(44) = 701408733
 Calculation time for fibonacci(44) = 3.650 seconds
 fibonacci(45) = 1134903170
 Calculation time for fibonacci(45) = 5.911 seconds
 Total calculation time = 5.911 seconds

Synchronous calculations took 161% more time than the asynchronous ones

Fig. 23.30 | Fibonacci calculations performed synchronously and asynchronously. (Part 4 of 4.)

1034 Chapter 23 Concurrency

plier—in this case, we use a lambdas with empty parameter lists to invoke
startFibonacci(45) (line 39) and startFibonacci(44) (line 41). The compiler infers that
supplyAsync returns a CompletableFuture<TimeData> because method startFibonacci
returns type TimeData. Class CompletableFuture also provides static method runAsync to
execute an asynchronous task that does not return a result—this method receives a Runnable.

Getting the Asynchronous Calculations’ Results
Class CompletableFuture implements interface Future, so we can obtain the asynchronous
tasks’ results by calling Future method get (lines 44–45). These are blocking calls—they
cause the main thread to wait until the asynchronous tasks complete and return their results.
In our case, the results are TimeData objects. Once both tasks return, lines 46–47 pass both
TimeData objects to method calculateTime (lines 91–104) to get the total calculation
time in seconds. Then, lines 48–49 display the total calculation time for the asynchronous
Fibonacci calculations. Finally, lines 52–55 calculate and display the percentage difference
in execution time for the synchronous and asynchronous calculations.

Program Outputs
On our dual-core computer, the synchronous calculations took a total of 9.506 seconds.
Though the individual asynchronous calculations took approximately the same amount of
time as the corresponding synchronous calculations, the total time for the asynchronous
calculations was only 5.911 seconds, because the two calculations were actually performed
in parallel. As you can see in the output, the synchronous calculations took 161% more time
to complete, so asynchronous execution provided a significant performance improvement.

23.15 (Advanced) Fork/Join Framework
Java’s concurrency APIs include the fork/join framework, which helps programmers par-
allelize algorithms. The framework is beyond the scope of this book. Experts tell us that
most Java programmers will nevertheless benefit by the fork/join framework’s use “behind
the scenes” in the Java API and other third party libraries. For example, the parallel capa-
bilities of Java SE 8 streams are implemented using this framework.

The fork/join framework is particularly well suited to divide-and-conquer-style algo-
rithms, such as the merge sort that we implemented in Section 19.8. Recall that the recur-
sive merge-sort algorithm sorts an array by splitting it into two equal-sized subarrays,
sorting each subarray, then merging them into one larger array. Each subarray is sorted by
performing the same algorithm on the subarray. For algorithms like merge sort, the fork/
join framework can be used to create concurrent tasks so that they can be distributed across
multiple processors and be truly performed in parallel—the details of assigning the tasks
to different processors are handled for you by the framework.

23.16 Wrap-Up
In this chapter, we presented Java’s concurrency capabilities for enhancing application per-
formance on multi-core systems. You learned the differences between concurrent and par-
allel execution. We discussed that Java makes concurrency available to you through
multithreading. You also learned that the JVM itself creates threads to run a program, and
that it also can create threads to perform housekeeping tasks such as garbage collection.

 Summary 1035

We discussed the life cycle of a thread and the states that a thread may occupy during
its lifetime. Next, we presented the interface Runnable, which is used to specify a task that
can execute concurrently with other tasks. This interface’s run method is invoked by the
thread executing the task. We showed how to execute a Runnable object by associating it
with an object of class Thread. Then we showed how to use the Executor interface to
manage the execution of Runnable objects via thread pools, which can reuse existing
threads to eliminate the overhead of creating a new thread for each task and can improve
performance by optimizing the number of threads to ensure that the processor stays busy.

You learned that when multiple threads share an object and one or more of them
modify that object, indeterminate results may occur unless access to the shared object is
managed properly. We showed you how to solve this problem via thread synchronization,
which coordinates access to shared mutable data by multiple concurrent threads. You
learned several techniques for performing synchronization—first with the built-in class
ArrayBlockingQueue (which handles all the synchronization details for you), then with
Java’s built-in monitors and the synchronized keyword, and finally with interfaces Lock
and Condition.

We discussed the fact that Swing GUIs are not thread safe, so all interactions with and
modifications to the GUI must be performed in the event dispatch thread. We also dis-
cussed the problems associated with performing long-running calculations in the event
dispatch thread. Then we showed how you can use the SwingWorker class to perform long-
running calculations in worker threads. You learned how to display the results of a Swing-
Worker in a GUI when the calculation completed and how to display intermediate results
while the calculation was still in process.

We revisited the Arrays class’s sort and parallelSort methods to demonstrate the
benefit of using a parallel sorting algorithm on a multi-core processor. We used the Java
SE 8 Date/Time API’s Instant and Duration classes to time the sort operations.

You learned that Java SE 8 streams are easy to parallelize, enabling programs to benefit
from enhanced performance on multi-core systems, and that to obtain a parallel stream,
you simply invoke method parallel on an existing stream.

We discussed the Callable and Future interfaces, which enable you to execute tasks
that return results and to obtain those results, respectively. We then presented an example
of performing long-running tasks synchronously and asynchronously using Java SE 8’s
new CompletableFuture class. We use the multithreading techniques introduced in this
chapter again in Chapter 28, Networking, to help build multithreaded servers that can
interact with multiple clients concurrently. In the next chapter, we introduce database-
application development with Java’s JDBC API.

Summary
Section 23.1 Introduction
• Two tasks that are operating concurrently are both making progress at once.

• Two tasks that are operating in parallel are executing simultaneously. In this sense, parallelism is
a subset of concurrency. Today’s multi-core computers have multiple processors that can per-
form tasks in parallel.

• Java makes concurrency available to you through the language and APIs.

1036 Chapter 23 Concurrency

• Java programs can have multiple threads of execution, where each thread has its own method-
call stack and program counter, allowing it to execute concurrently with other threads. This ca-
pability is called multithreading.

• In a multithreaded application, threads can be distributed across multiple processors (if available)
so that multiple tasks execute in parallel and the application can operate more efficiently.

• The JVM creates threads to run a program and for housekeeping tasks such as garbage collection.

• Multithreading can also increase performance on single-processor systems—when one thread
cannot proceed (because, for example, it’s waiting for the result of an I/O operation), another
can use the processor.

• The vast majority of programmers should use existing collection classes and interfaces from the
concurrency APIs that manage synchronization for you.

Section 23.2 Thread States and Life Cycle
• A new thread begins its life cycle in the new state (p. 961). When the program starts the thread, it’s

placed in the runnable state. A thread in the runnable state is considered to be executing its task.

• A runnable thread transitions to the waiting state (p. 961) to wait for another thread to perform a
task. A waiting thread transitions to runnable when another thread notifies it to continue executing.

• A runnable thread can enter the timed waiting state (p. 961) for a specified interval of time, transi-
tioning back to runnable when that time interval expires or when the event it’s waiting for occurs.

• A runnable thread can transition to the timed waiting state if it provides an optional wait interval
when it’s waiting for another thread to perform a task. Such a thread will return to the runnable
state when it’s notified by another thread or when the timed interval expires.

• A sleeping thread (p. 961) remains in the timed waiting state for a designated period of time, after
which it returns to the runnable state.

• A runnable thread transitions to the blocked state (p. 961) when it attempts to perform a task that
cannot be completed immediately and the thread must temporarily wait until that task completes.
At that point, the blocked thread transitions to the runnable state, so it can resume execution.

• A runnable thread enters the terminated state (p. 961) when it successfully completes its task or
otherwise terminates (perhaps due to an error).

• At the operating-system level, the runnable state (p. 962) encompasses two separate states. When a
thread first transitions to the runnable state from the new state, it’s in the ready state (p. 962). A
ready thread enters the running state (p. 962) when the operating system dispatches it.

• Most operating systems allot a quantum (p. 962) in which a thread performs its task. When this
expires, the thread returns to the ready state and another thread is assigned to the processor.

• Thread scheduling determines which thread to dispatch based on thread priorities.

• The job of an operating system’s thread scheduler (p. 962) is to determine which thread runs next.

• When a higher-priority thread enters the ready state, the operating system generally preempts the
currently running thread (an operation known as preemptive scheduling; p. 963).

• Depending on the operating system, higher-priority threads could postpone—possibly indefi-
nitely (p. 963)—the execution of lower-priority threads.

Section 23.3 Creating and Executing Threads with the Executor Framework
• A Runnable (p. 963) object represents a task that can execute concurrently with other tasks.

• Interface Runnable declares method run (p. 963) in which you place the code that defines the
task to perform. The thread executing a Runnable calls method run to perform the task.

• A program will not terminate until its last thread completes execution.

 Summary 1037

• You cannot predict the order in which threads will be scheduled, even if you know the order in
which they were created and started.

• It’s recommended that you use the Executor interface (p. 963) to manage the execution of Run-
nable objects. An Executor object typically creates and manages a group of threads—called a
thread pool (p. 963).

• Executors (p. 964) can reuse existing threads and can improve performance by optimizing the
number of threads to ensure that the processor stays busy.

• Executor method execute (p. 963) receives a Runnable and assigns it to an available thread in a
thread pool. If there are none, the Executor creates a new thread or waits for one to become available.

• Interface ExecutorService (of package java.util.concurrent; p. 964) extends interface Exec-
utor and declares other methods for managing the life cycle of an Executor.

• An object that implements the ExecutorService interface can be created using static methods
declared in class Executors (of package java.util.concurrent).

• Executors method newCachedThreadPool (p. 965) returns an ExecutorService that creates new
threads as they’re needed by the application.

• ExecutorService method execute executes its Runnable sometime in the future. The method re-
turns immediately from each invocation—the program does not wait for each task to finish.

• ExecutorService method shutdown (p. 967) notifies the ExecutorService to stop accepting new
tasks, but continues executing existing tasks and terminates when those tasks complete execution.

Section 23.4 Thread Synchronization
• Thread synchronization (p. 968) coordinates access to shared mutable data by multiple concur-

rent threads.

• By synchronizing threads, you can ensure that each thread accessing a shared object excludes all
other threads from doing so simultaneously—this is called mutual exclusion (p. 968).

• A common way to perform synchronization is to use Java’s built-in monitors. Every object has a
monitor and a monitor lock (p. 968). The monitor ensures that its object’s monitor lock is held
by a maximum of only one thread at any time, and thus can be used to enforce mutual exclusion.

• If an operation requires the executing thread to hold a lock while the operation is performed, a
thread must acquire the lock (p. 968) before it can proceed with the operation. Any other threads
attempting to perform an operation that requires the same lock will be blocked until the first
thread releases the lock, at which point the blocked threads may attempt to acquire the lock.

• To specify that a thread must hold a monitor lock to execute a block of code, the code should be
placed in a synchronized statement (p. 968). Such code is said to be guarded by the monitor lock.

• The synchronized statements are declared using the synchronized keyword:

synchronized (object)
{
 statements
} // end synchronized statement

where object is the object whose monitor lock will be acquired; object is normally this if it’s the
object in which the synchronized statement appears.

• Java also allows synchronized methods (p. 969). Before executing, a synchronized instance
method must acquire the lock on the object that’s used to call the method. Similary, a static
synchronized method must acquire the lock on the class that’s used to call the method.

• ExecutorService method awaitTermination (p. 973) forces a program to wait for threads to ter-
minate. It returns control to its caller either when all tasks executing in the ExecutorService

1038 Chapter 23 Concurrency

complete or when the specified timeout elapses. If all tasks complete before the timeout elapses,
the method returns true; otherwise, it returns false.

• You can simulate atomicity (p. 974) by ensuring that only one thread performs a set of operations
at a time. Atomicity can be achieved with synchronized statements or synchronized methods.

• When you share immutable data across threads, you should declare the corresponding data fields
final to indicate that variables’ values will not change after they’re initialized.

Section 23.5 Producer/Consumer Relationship without Synchronization
• In a multithreaded producer/consumer relationship (p. 976), a producer thread generates data

and places it in a shared object called a buffer. A consumer thread reads data from the buffer.

• Operations on a buffer data shared by a producer and a consumer should proceed only if the buf-
fer is in the correct state. If the buffer is not full, the producer may produce; if the buffer is not
empty, the consumer may consume. If the buffer is full when the producer attempts to write into
it, the producer must wait until there’s space. If the buffer is empty or the previous value was
already read, the consumer must wait for new data to become available.

Section 23.6 Producer/Consumer Relationship: ArrayBlockingQueue
• ArrayBlockingQueue (p. 984) is a fully implemented buffer class from package java.util.con-

current that implements the BlockingQueue interface.

• An ArrayBlockingQueue can implement a shared buffer in a producer/consumer relationship.
Method put (p. 984) places an element at the end of the BlockingQueue, waiting if the queue is
full. Method take (p. 984) removes an element from the head of the BlockingQueue, waiting if
the queue is empty.

• ArrayBlockingQueue stores shared mutable data in an array that’s sized with an argument passed
to the constructor. Once created, an ArrayBlockingQueue is fixed in size.

Section 23.7 (Advanced) Producer/Consumer Relationship with synchronized,
wait, notify and notifyAll
• You can implement a shared buffer yourself using the synchronized keyword and Object meth-

ods wait, notify and notifyAll (p. 988).

• A thread can call Object method wait to release an object’s monitor lock, and wait in the waiting
state while the other threads try to enter the object’s synchronized statement(s) or method(s).

• When a thread executing a synchronized statement (or method) completes or satisfies the con-
dition on which another thread may be waiting, it can call Object method notify (p. 988) to
allow a waiting thread to transition to the runnable state. At this point, the thread that was tran-
sitioned can attempt to reacquire the monitor lock on the object.

• If a thread calls notifyAll (p. 988), then all the threads waiting for the monitor lock become
eligible to reacquire the lock (that is, they all transition to the runnable state).

Section 23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers
• You cannot make assumptions about the relative speeds of concurrent threads.

• A bounded buffer (p. 995) can be used to minimize the amount of waiting time for threads that
share resources and operate at the same average speeds. If the producer temporarily produces val-
ues faster than the consumer can consume them, the producer can write additional values into
the extra buffer space (if any are available). If the consumer consumes faster than the producer
produces new values, the consumer can read additional values (if there are any) from the buffer.

• The key to using a bounded buffer with a producer and consumer that operate at about the same
speed is to provide the buffer with enough locations to handle the anticipated “extra” production.

 Summary 1039

• The simplest way to implement a bounded buffer is to use an ArrayBlockingQueue for the buffer
so that all of the synchronization details are handled for you.

Section 23.9 (Advanced) Producer/Consumer Relationship: The Lock and Condition
Interfaces
• The Lock and Condition interfaces (p. 1002) give programmers more precise control over thread

synchronization, but are more complicated to use.

• Any object can contain a reference to an object that implements the Lock interface (of package
java.util.concurrent.locks). A thread calls a Lock’s lock method (p. 1002) to acquire the
lock. Once a Lock has been obtained by one thread, the Lock will not allow another thread to
obtain it until the first thread releases it (by calling the Lock’s unlock method; p. 1002).

• If several threads are trying to call method lock on the same Lock object at the same time, only
one thread can obtain the lock—the others are placed in the waiting state. When a thread calls
unlock, the object’s lock is released and a waiting thread attempting to lock the object proceeds.

• Class ReentrantLock (p. 1002) is a basic implementation of the Lock interface.

• The ReentrantLock constructor takes a boolean that specifies whether the lock has a fairness pol-
icy (p. 1002). If true, the ReentrantLock’s fairness policy is “the longest-waiting thread will ac-
quire the lock when it’s available”—this prevents indefinite postponement. If the argument is set
to false, there’s no guarantee as to which waiting thread will acquire the lock when it’s available.

• If a thread that owns a Lock determines that it cannot continue with its task until some condition
is satisfied, the thread can wait on a condition object (p. 1003). Using Lock objects allows you to
explicitly declare the condition objects on which a thread may need to wait.

• Condition (p. 1003) objects are associated with a specific Lock and are created by calling Lock
method newCondition, which returns a Condition object. To wait on a Condition, the thread
can call the Condition’s await method. This immediately releases the associated Lock and places
the thread in the waiting state for that Condition. Other threads can then try to obtain the Lock.

• When a runnable thread completes a task and determines that a waiting thread can now continue,
the runnable thread can call Condition method signal to allow a thread in that Condition’s wait-
ing state to return to the runnable state. At this point, the thread that transitioned from the wait-
ing state to the runnable state can attempt to reacquire the Lock.

• If multiple threads are in a Condition’s waiting state when signal is called, the default imple-
mentation of Condition signals the longest-waiting thread to transition to the runnable state.

• If a thread calls Condition method signalAll, then all the threads waiting for that condition
transition to the runnable state and become eligible to reacquire the Lock.

• When a thread is finished with a shared object, it must call method unlock to release the Lock.

• Locks allow you to interrupt waiting threads or to specify a timeout for waiting to acquire a
lock—not possible with synchronized. Also, a Lock object is not constrained to be acquired and
released in the same block of code, which is the case with the synchronized keyword.

• Condition objects allow you to specify multiple conditions on which threads may wait. Thus, it’s
possible to indicate to waiting threads that a specific condition object is now true by calling that
Condition object’s signal or signallAll methods (p. 1003). With synchronized, there’s no way
to explicitly state the condition on which threads are waiting.

Section 23.11 Multithreading with GUI: SwingWorker
• The event dispatch thread (p. 1011) handles interactions with the application’s GUI compo-

nents. All tasks that interact with the GUI are placed in an event queue and executed sequentially
by this thread.

1040 Chapter 23 Concurrency

• Swing GUI components are not thread safe. Thread safety is achieved by ensuring that Swing
components are accessed from only the event dispatch thread.

• Performing a lengthy computation in response to a user interface interaction ties up the event
dispatch thread, preventing it from attending to other tasks and causing the GUI components to
become unresponsive. Long-running computations should be handled in separate threads.

• You can extend generic class SwingWorker (package javax.swing; p. 1011), which implements
Runnable, to perform a task in a worker thread then update Swing components from the event
dispatch thread based on the task’s results. You override its doInBackground and done methods.
Method doInBackground performs the computation and returns the result. Method done displays
the results in the GUI.

• Class SwingWorker’s first type parameter indicates the type returned by the doInBackground
method; the second indicates the type that’s passed between the publish and process methods
to handle intermediate results.

• Method doInBackground is called from a worker thread. After doInBackground returns, method
done is called from the event dispatch thread to display the results.

• An ExecutionException is thrown if an exception occurs during the computation.

• SwingWorker method publish repeatedly sends intermediate results to method process, which
displays the results in a GUI component. Method setProgress updates the progress property.

• Method process executes in the event dispatch thread and receives data from method publish.
The passing of values between publish in the worker thread and process in the event dispatch
thread is asynchronous; process is not necessarily invoked for every call to publish.

• PropertyChangeListener (p. 1024) is an interface from package java.beans that defines a single
method, propertyChange. Every time method setProgress is invoked, a PropertyChangeEvent
is generated to indicate that the progress property has changed.

Section 23.12 Timing sort and parallelSort with the Java SE 8 Date/Time API
• Class Instant’s static method now gets the current time.

• To determine the difference between two Instants, use class Duration’s static method between,
which returns a Duration object containing the time difference.

• Duration method toMillis returns the Duration as a long value milliseconds.

• NumberFormat static method getPercentInstance returns a NumberFormat that’s used to format
a number as a percentage.

• NumberFormat method format returns a String representation of its argument in the specified
numeric format.

• Arrays static method parallelSetAll fills an array with values produced by a generator func-
tion that receives an int and returns a value of type int, long or double. Depending on which
overload of method parallelSetAll is used the generator function is an object of a class that im-
plements IntToDoubleFunction (for double arrays), IntUnaryOperator (for int arrays), IntTo-
LongFunction (for long arrays) or IntFunction (for arrays of any non-primitive type).

• Arrays static method parallelPrefix applies a BinaryOperator to the current and previous ar-
ray elements and stores the result in the current element.

Section 23.13 Java SE 8: Sequential vs. Parallel Streams
• Streams are easy to parallelize, enabling programs to benefit from enhanced performance on

multi-core systems.

• To obtain a parallel stream, simply invoke method parallel on an existing stream.

 Self-Review Exercises 1041

Section 23.14 (Advanced) Interfaces Callable and Future
• The Callable (p. 1030) interface (of package java.util.concurrent) declares a single method

named call that allows a task to return a value.

• ExecutorService method submit (p. 1030) executes a Callable passed in as its argument. Meth-
od submit returns an object of type Future (of package java.util.concurrent) that represents
the future result of the executing Callable.

• Interface Future (p. 1030) declares method get to return the result of the Callable. The inter-
face also provides methods that enable you to cancel a Callable’s execution, determine whether
the Callable was cancelled and determine whether the Callable completed its task.

• Java SE 8 introduces a new CompletableFuture class (package java.util.concurrent; p. 1030),
which implements the Future interface and enables you to asynchronously execute Runnables
that perform tasks or Suppliers that return values.

• Interface Supplier (p. 1030), like interface Callable, is a functional interface with a single meth-
od (in this case, get) that receives no arguments and returns a result.

• CompletableFuture static method supplyAsync (p. 1033) asynchronously executes a Supplier
task that returns a value.

• CompletableFuture static method runAsync (p. 1034) asynchronously executes a Runnable task
that does not return a result.

• CompletableFuture method get is a blocking method—it causes the calling thread to wait until
the asynchronous task completes and returns its results.

Section 23.15 (Advanced) Fork/Join Framework
• Java’s concurrency APIs include the fork/join framework, which helps programmers parallelize

algorithms. The fork/join framework particularly well suited to divide-and-conquer-style algo-
rithms, like the merge sort.

Self-Review Exercises
23.1 Fill in the blanks in each of the following statements:

a) A thread enters the terminated state when .
b) To pause for a designated number of milliseconds and resume execution, a thread

should call method of class .
c) A runnable thread can enter the state for a specified interval of time.
d) At the operating-system level, the runnable state actually encompasses two separate

states, and .
e) Runnables are executed using a class that implements the interface.
f) ExecutorService method ends each thread in an ExecutorService as soon as

it finishes executing its current Runnable, if any.
g) In a(n) relationship, the generates data and stores it in a shared ob-

ject, and the reads data from the shared object.
h) Keyword indicates that only one thread at a time should execute on an object.

23.2 (Advanced Optional Sections) Fill in the blanks in each of the following statements:
a) Method of class Condition moves a single thread in an object’s waiting state

to the runnable state.
b) Method of class Condition moves every thread in an object’s waiting state to

the runnable state.
c) A thread can call method on a Condition object to release the associated Lock

and place that thread in the state.

1042 Chapter 23 Concurrency

d) Class implements the BlockingQueue interface using an array.
e) Class Instant’s static method gets the current time.
f) Duration method returns the Duration as a long value milliseconds.
g) NumberFormat static method returns a NumberFormat that’s used to format a

number as a percentage.
h) NumberFormat method returns a String representation of its argument in the

specified numeric format.
i) Arrays static method fills an array with values produced by a generator function.
j) Arrays static method applies a BinaryOperator to the current and previous

array elements and stores the result in the current element.
k) To obtain a parallel stream, simply invoke method on an existing stream.
l) Among its many features a CompletableFuture enables you to asynchronously execute

 that perform tasks or that return values.

23.3 State whether each of the following is true or false. If false, explain why.
a) A thread is not runnable if it has terminated.
b) Some operating systems use timeslicing with threads. Therefore, they can enable threads

to preempt threads of the same priority.
c) When the thread’s quantum expires, the thread returns to the running state as the op-

erating system assigns it to a processor.
d) On a single-processor system without timeslicing, each thread in a set of equal-priority

threads (with no other threads present) runs to completion before other threads of equal
priority get a chance to execute.

23.4 (Advanced Optional Sections) State whether each of the following is true or false. If false,
explain why.

a) To determine the difference between two Instants, use class Duration’s static method
difference, which returns a Duration object containing the time difference.

b) Streams are easy to parallelize, enabling programs to benefit from enhanced perfor-
mance on multi-core systems.

c) Interface Supplier, like interface Callable, is a functional interface with a single meth-
od that receives no arguments and returns a result.

d) CompletableFuture static method runAsync asynchronously executes a Supplier task
that returns a value.

e) CompletableFuture static method supplyAsync asynchronously executes a Runnable
task that does not return a result.

Answers to Self-Review Exercises
23.1 a) its run method ends. b) sleep, Thread. c) timed waiting. d) ready, running. e) Executor.
f) shutdown. g) producer/consumer, producer, consumer. h) synchronized.

23.2 a) signal. b) signalAll. c) await, waiting. d) ArrayBlockingQueue. e) now. f) toMillis.
g) getPercentInstance. h) format. i) parallelSetAll. j) parallelPrefix. k) parallel. l) Runna-
bles, Suppliers.

23.3 a) True. b) False. Timeslicing allows a thread to execute until its timeslice (or quantum)
expires. Then other threads of equal priority can execute. c) False. When a thread’s quantum ex-
pires, the thread returns to the ready state and the operating system assigns to the processor another
thread. d) True.

23.4 a) False. The Duration method for calculating the difference between two Instants is
named between. b) True. c) True. d) False. The method that asynchronously executes a Supplier is
supplyAsync. e) False. The method that asynchronously executes a Runnable is runAsync.

 Exercises 1043

Exercises
23.5 (True or False) State whether each of the following is true or false. If false, explain why.

a) Method sleep does not consume processor time while a thread sleeps.
b) Swing components are thread safe.
c) (Advanced) Declaring a method synchronized guarantees that deadlock cannot occur.
d) (Advanced) Once a ReentrantLock has been obtained by a thread, the ReentrantLock

object will not allow another thread to obtain the lock until the first thread releases it.

23.6 (Multithreading Terms) Define each of the following terms.
a) thread
b) multithreading
c) runnable state
d) timed waiting state
e) preemptive scheduling
f) Runnable interface
g) producer/consumer relationship
h) quantum

23.7 (Advanced: Multithreading Terms) Discuss each of the following terms in the context of
Java’s threading mechanisms:

a) synchronized
b) wait
c) notify
d) notifyAll
e) Lock
f) Condition

23.8 (Blocked State) List the reasons for entering the blocked state. For each of these, describe
how the program will normally leave the blocked state and enter the runnable state.

23.9 (Deadlock and Indefinite Postponement) Two problems that can occur in systems that al-
low threads to wait are deadlock, in which one or more threads will wait forever for an event that
cannot occur, and indefinite postponement, in which one or more threads will be delayed for some
unpredictably long time. Give an example of how each of these problems can occur in multithread-
ed Java programs.

23.10 (Bouncing Ball) Write a program that bounces a blue ball inside a JPanel. The ball should
begin moving with a mousePressed event. When the ball hits the edge of the JPanel, it should bounce
off the edge and continue in the opposite direction. The ball should be updated using a Runnable.

23.11 (Bouncing Balls) Modify the program in Exercise 23.10 to add a new ball each time the user
clicks the mouse. Provide for a minimum of 20 balls. Randomly choose the color for each new ball.

23.12 (Bouncing Balls with Shadows) Modify the program in Exercise 23.11 to add shadows. As
a ball moves, draw a solid black oval at the bottom of the JPanel. You may consider adding a 3-D
effect by increasing or decreasing the size of each ball when it hits the edge of the JPanel.

23.13 (Advanced: Circular Buffer with Locks and Conditions) Reimplement the example in
Section 23.8 using the Lock and Condition concepts presented in Section 23.9.

23.14 (Bounded Buffer: A Real-World Example) Describe how a highway off-ramp onto a local
road is a good example of a producer/consumer relationship with a bounded buffer. In particular,
discuss how the designers might choose the size of the off-ramp.

1044 Chapter 23 Concurrency

Parallel Streams
For Exercises 23.15–23.17, you may need to create larger data sets to see a significant performance
difference.

23.15 (Summarizing the Words in a File) Reimplement Fig. 17.17 using parallel streams. Use the
Date/Time API timing techniques you learned in Section 23.12 to compare the time required for
the sequential and parallel versions of the program.

23.16 (Summarizing the Characters in a File) Reimplement Exercise 17.9 using parallel streams.
Use the Date/Time API timing techniques you learned in Section 23.12 to compare the time re-
quired for the sequential and parallel versions of the program.

23.17 (Summarizing the File Types in a Directory) Reimplement Exercise 17.10 using parallel
streams. Use the Date/Time API timing techniques you learned in Section 23.12 to compare the
time required for the sequential and parallel versions of the program.

