

26Multithreading

The most general definition of
beauty…Multeity in Unity.
—Samuel Taylor Coleridge

Do not block the way of inquiry.
—Charles Sanders Peirce

A person with one watch knows
what time it is; a person with
two watches is never sure.
—Proverb

Learn to labor and to wait.
—Henry Wadsworth Longfellow

The world is moving so fast these
days that the man who says it
can’t be done is generally
interrupted by someone doing it.
—Elbert Hubbard

O b j e c t i v e s
In this chapter you’ll learn:

� What threads are and why
they’re useful.

� How threads enable you to
manage concurrent activities.

� The life cycle of a thread.

� To create and execute
Runnables.

� Thread synchronization.

� What producer/consumer
relationships are and how
they’re implemented with
multithreading.

� To enable multiple threads to
update Swing GUI
components in a thread-safe
manner.

1046 Chapter 26 Multithreading

26.1 Introduction
It would be nice if we could focus our attention on performing only one action at a time
and performing it well, but that’s usually difficult to do. The human body performs a great
variety of operations in parallel—or, as we’ll say throughout this chapter, concurrently.
Respiration, blood circulation, digestion, thinking and walking, for example, can occur
concurrently, as can all the senses—sight, touch, smell, taste and hearing.

Computers, too, can perform operations concurrently. It’s common for personal
computers to compile a program, send a file to a printer and receive electronic mail mes-
sages over a network concurrently. Only computers that have multiple processors can truly
execute multiple instructions concurrently. Operating systems on single-processor com-
puters create the illusion of concurrent execution by rapidly switching between activities,
but on such computers only a single instruction can execute at once. Today’s multicore
computers have multiple processors that enable computers to perform tasks truly concur-
rently. Multicore smartphones are starting to appear.

Historically, concurrency has been implemented with operating system primitives
available only to experienced systems programmers. The Ada programming language—
developed by the United States Department of Defense—made concurrency primitives
widely available to defense contractors building military command-and-control systems.
However, Ada has not been widely used in academia and industry.

Java Concurrency
Java makes concurrency available to you through the language and APIs. Java programs
can have multiple threads of execution, where each thread has its own method-call stack
and program counter, allowing it to execute concurrently with other threads while sharing
with them application-wide resources such as memory. This capability is called multi-
threading.

26.1 Introduction
26.2 Thread States: Life Cycle of a Thread
26.3 Creating and Executing Threads with

Executor Framework
26.4 Thread Synchronization

26.4.1 Unsynchronized Data Sharing
26.4.2 Synchronized Data Sharing—Making

Operations Atomic
26.5 Producer/Consumer Relationship

without Synchronization
26.6 Producer/Consumer Relationship:

ArrayBlockingQueue

26.7 Producer/Consumer Relationship
with Synchronization

26.8 Producer/Consumer Relationship:
Bounded Buffers

26.9 Producer/Consumer Relationship:
The Lock and Condition
Interfaces

26.10 Concurrent Collections Overview
26.11 Multithreading with GUI

26.11.1 Performing Computations in a
Worker Thread

26.11.2 Processing Intermediate Results with
SwingWorker

26.12 Interfaces Callable and Future

26.13 Java SE 7: Fork/Join Framework
26.14 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

26.1 Introduction 1047

Concurrent Programming Uses
We’ll discuss many applications of concurrent programming. For example, when down-
loading a large file (e.g., an image, an audio clip or a video clip) over the Internet, the user
may not want to wait until the entire clip downloads before starting the playback. To solve
this problem, multiple threads can be used—one to download the clip, and another to play
it. These activities proceed concurrently. To avoid choppy playback, the threads are syn-
chronized (that is, their actions are coordinated) so that the player thread doesn’t begin
until there’s a sufficient amount of the clip in memory to keep the player thread busy. The
Java Virtual Machine (JVM) creates threads to run programs and threads to perform
housekeeping tasks such as garbage collection.

Concurrent Programming Is Difficult
Writing multithreaded programs can be tricky. Although the human mind can perform
functions concurrently, people find it difficult to jump between parallel trains of thought.
To see why multithreaded programs can be difficult to write and understand, try the fol-
lowing experiment: Open three books to page 1, and try reading the books concurrently.
Read a few words from the first book, then a few from the second, then a few from the
third, then loop back and read the next few words from the first book, and so on. After
this experiment, you’ll appreciate many of the challenges of multithreading—switching
between the books, reading briefly, remembering your place in each book, moving the
book you’re reading closer so that you can see it and pushing the books you’re not reading
aside—and, amid all this chaos, trying to comprehend the content of the books!

Use the Prebuilt Classes of the Concurrency APIs Whenever Possible
Programming concurrent applications is difficult and error prone. If you must use synchro-
nization in a program, you should follow some simple guidelines. Use existing classes from
the Concurrency APIs (such as the ArrayBlockingQueue class we discuss in Section 26.6) that
manage synchronization for you. These classes are written by experts, have been thoroughly
tested and debugged, operate efficiently and help you avoid common traps and pitfalls.

If you need even more complex capabilities, use interfaces Lock and Condition that
we introduce in Section 26.9. These interfaces should be used only by advanced program-
mers who are familiar with concurrent programming’s common traps and pitfalls. We
explain these topics in this chapter for several reasons:

• They provide a solid basis for understanding how concurrent applications syn-
chronize access to shared memory.

• The concepts are important to understand, even if an application does not use
these tools explicitly.

Performance Tip 26.1
A problem with single-threaded applications that can lead to poor responsiveness is that
lengthy activities must complete before others can begin. In a multithreaded application,
threads can be distributed across multiple processors (if available) so that multiple tasks ex-
ecute truly concurrently and the application can operate more efficiently. Multithreading
can also increase performance on single-processor systems that simulate concurrency—
when one thread cannot proceed (because, for example, it’s waiting for the result of an I/O
operation), another can use the processor.

1048 Chapter 26 Multithreading

• By showing you the complexity involved in using these low-level features, we
hope to impress upon you the importance of using prebuilt concurrency capabilities
whenever possible.

Section 26.10 provides an overview of Java’s pre-built concurrent collections.

26.2 Thread States: Life Cycle of a Thread
At any time, a thread is said to be in one of several thread states—illustrated in the UML
state diagram in Fig. 26.1. Several of the terms in the diagram are defined in later sections.
We include this discussion to help you understand what’s going on “under the hood” in a
Java multithreaded environment. Java hides most of this detail from you, greatly simplify-
ing the task of developing multithreaded applications.

New and Runnable States
A new thread begins its life cycle in the new state. It remains in this state until the program
starts the thread, which places it in the runnable state. A thread in the runnable state is
considered to be executing its task.

Waiting State
Sometimes a runnable thread transitions to the waiting state while it waits for another
thread to perform a task. A waiting thread transitions back to the runnable state only when
another thread notifies it to continue executing.

Timed Waiting State
A runnable thread can enter the timed waiting state for a specified interval of time. It tran-
sitions back to the runnable state when that time interval expires or when the event it’s
waiting for occurs. Timed waiting and waiting threads cannot use a processor, even if one

Fig. 26.1 | Thread life-cycle UML state diagram.

task
com

pletes

acquire
lock

i
n
t
e
r
r
u
p
t

I/O
com

pletesw
a
i
t

s
l
e
e
pno

ti
fy

no
ti
fy
Al
l

wa
it

in
te

rv
al

ex
pi

re
s

n
o
t
i
f
y

n
o
t
i
f
y
A
l
l

runnable

program starts
the thread

new

issue I/O request

enter synchronized

statement

timed waitingwaiting terminated blocked

26.2 Thread States: Life Cycle of a Thread 1049

is available. A runnable thread can transition to the timed waiting state if it provides an op-
tional wait interval when it’s waiting for another thread to perform a task. Such a thread
returns to the runnable state when it’s notified by another thread or when the timed inter-
val expires—whichever comes first. Another way to place a thread in the timed waiting
state is to put a runnable thread to sleep. A sleeping thread remains in the timed waiting
state for a designated period of time (called a sleep interval), after which it returns to the
runnable state. Threads sleep when they momentarily do not have work to perform. For
example, a word processor may contain a thread that periodically backs up (i.e., writes a
copy of) the current document to disk for recovery purposes. If the thread did not sleep
between successive backups, it would require a loop in which it continually tested whether
it should write a copy of the document to disk. This loop would consume processor time
without performing productive work, thus reducing system performance. In this case, it’s
more efficient for the thread to specify a sleep interval (equal to the period between suc-
cessive backups) and enter the timed waiting state. This thread is returned to the runnable
state when its sleep interval expires, at which point it writes a copy of the document to disk
and reenters the timed waiting state.

Blocked State
A runnable thread transitions to the blocked state when it attempts to perform a task that
cannot be completed immediately and it must temporarily wait until that task completes.
For example, when a thread issues an input/output request, the operating system blocks
the thread from executing until that I/O request completes—at that point, the blocked
thread transitions to the runnable state, so it can resume execution. A blocked thread can-
not use a processor, even if one is available.

Terminated State
A runnable thread enters the terminated state (sometimes called the dead state) when it
successfully completes its task or otherwise terminates (perhaps due to an error). In the
UML state diagram of Fig. 26.1, the terminated state is followed by the UML final state
(the bull’s-eye symbol) to indicate the end of the state transitions.

Operating-System View of the Runnable State
At the operating system level, Java’s runnable state typically encompasses two separate states
(Fig. 26.2). The operating system hides these states from the Java Virtual Machine (JVM),
which sees only the runnable state. When a thread first transitions to the runnable state
from the new state, it’s in the ready state. A ready thread enters the running state (i.e., be-
gins executing) when the operating system assigns it to a processor—also known as dis-
patching the thread. In most operating systems, each thread is given a small amount of
processor time—called a quantum or timeslice—with which to perform its task. Deciding
how large the quantum should be is a key topic in operating systems courses. When its
quantum expires, the thread returns to the ready state, and the operating system assigns
another thread to the processor. Transitions between the ready and running states are han-
dled solely by the operating system. The JVM does not “see” the transitions—it simply
views the thread as being runnable and leaves it up to the operating system to transition
the thread between ready and running. The process that an operating system uses to deter-
mine which thread to dispatch is called thread scheduling and is dependent on thread pri-
orities.

1050 Chapter 26 Multithreading

Thread Priorities and Thread Scheduling
Every Java thread has a thread priority that helps determine the order in which threads are
scheduled. Each new thread inherits the priority of the thread that created it. Informally,
higher-priority threads are more important to a program and should be allocated processor
time before lower-priority threads. Nevertheless, thread priorities cannot guarantee the order
in which threads execute.

It’s recommended that you do not explicitly create and use Thread objects to implement con-
currency, but rather use the Executor interface (which is described in Section 26.3). The
Thread class does contain some useful static methods, which you will use later in the
chapter.

Most operating systems support timeslicing, which enables threads of equal priority
to share a processor. Without timeslicing, each thread in a set of equal-priority threads
runs to completion (unless it leaves the runnable state and enters the waiting or timed
waiting state, or gets interrupted by a higher-priority thread) before other threads of equal
priority get a chance to execute. With timeslicing, even if a thread has not finished exe-
cuting when its quantum expires, the processor is taken away from the thread and given
to the next thread of equal priority, if one is available.

An operating system’s thread scheduler determines which thread runs next. One simple
thread-scheduler implementation keeps the highest-priority thread running at all times
and, if there’s more than one highest-priority thread, ensures that all such threads execute
for a quantum each in round-robin fashion. This process continues until all threads run
to completion.

When a higher-priority thread enters the ready state, the operating system generally
preempts the currently running thread (an operation known as preemptive scheduling).
Depending on the operating system, higher-priority threads could postpone—possibly
indefinitely—the execution of lower-priority threads. Such indefinite postponement is
sometimes referred to more colorfully as starvation. Operating systems employ a tech-
nique called aging to prevent starvation—as a thread waits in the ready state, the operating
system gradually increases the thread’s priority, thus ensuring that the thread will eventu-
ally run.

Java provides higher-level concurrency utilities to hide much of this complexity and make
multithreaded programming less error prone. Thread priorities are used behind the scenes to
interact with the operating system, but most programmers who use Java multithreading will not
be concerned with setting and adjusting thread priorities.

Fig. 26.2 | Operating system’s internal view of Java’s runnable state.

Portability Tip 26.1
Thread scheduling is platform dependent—the behavior of a multithreaded program
could vary across different Java implementations.

running

runnable

quantum expires

operating system
dispatches a thread

ready

26.3 Creating and Executing Threads with Executor Framework 1051

26.3 Creating and Executing Threads with Executor
Framework
This section demonstrates how to perform concurrent tasks in an application by using
Executors and Runnable objectss.

Creating Concurrent Tasks with the Runnable Interface
You implement the Runnable interface (of package java.lang) to specify a task that can
execute concurrently with other tasks. The Runnable interface declares the single method
run, which contains the code that defines the task that a Runnable object should perform.

Executing Runnable Objects with an Executor
To allow a Runnable to perform its task, you must execute it. An Executor object executes
Runnables. An Executor does this by creating and managing a group of threads called a
thread pool. When an Executor begins executing a Runnable, the Executor calls the Run-
nable object’s run method, which executes in the new thread.

The Executor interface declares a single method named execute which accepts a Run-
nable as an argument. The Executor assigns every Runnable passed to its execute method
to one of the available threads in the thread pool. If there are no available threads, the
Executor creates a new thread or waits for a thread to become available and assigns that
thread the Runnable that was passed to method execute.

Using an Executor has many advantages over creating threads yourself. Executors can
reuse existing threads to eliminate the overhead of creating a new thread for each task and can
improve performance by optimizing the number of threads to ensure that the processor stays
busy, without creating so many threads that the application runs out of resources.

Using Class Executors to Obtain an ExecutorService
The ExecutorService interface (of package java.util.concurrent) extends Executor
and declares various methods for managing the life cycle of an Executor. An object that
implements the ExecutorService interface can be created using static methods declared
in class Executors (of package java.util.concurrent). We use interface ExecutorSer-

vice and a method of class Executors in our example, which executes three tasks.

Implementing the Runnable Interface
Class PrintTask (Fig. 26.3) implements Runnable (line 5), so that multiple PrintTasks can
execute concurrently. Variable sleepTime (line 7) stores a random integer value from 0 to 5
seconds created in the PrintTask constructor (line 17). Each thread running a PrintTask
sleeps for the amount of time specified by sleepTime, then outputs its task’s name and a
message indicating that it’s done sleeping.

A PrintTask executes when a thread calls the PrintTask’s run method. Lines 25–26
display a message indicating the name of the currently executing task and that the task is
going to sleep for sleepTime milliseconds. Line 27 invokes static method sleep of class
Thread to place the thread in the timed waiting state for the specified amount of time. At
this point, the thread loses the processor, and the system allows another thread to execute.

Software Engineering Observation 26.1
Though it’s possible to create threads explicitly, it’s recommended that you use the
Executor interface to manage the execution of Runnable objects.

1052 Chapter 26 Multithreading

When the thread awakens, it reenters the runnable state. When the PrintTask is assigned
to a processor again, line 36 outputs a message indicating that the task is done sleeping,
then method run terminates. The catch at lines 29–33 is required because method sleep

might throw a checked exception of type InterruptedException if a sleeping thread’s
interrupt method is called.

Using the ExecutorService to Manage Threads that Execute PrintTasks
Figure 26.4 uses an ExecutorService object to manage threads that execute PrintTasks

(as defined in Fig. 26.3). Lines 11–13 create and name three PrintTasks to execute. Line
18 uses Executors method newCachedThreadPool to obtain an ExecutorService that’s
capable of creating new threads as they’re needed by the application. These threads are
used by ExecutorService (threadExecutor) to execute the Runnables.

1 // Fig. 26.3: PrintTask.java
2 // PrintTask class sleeps for a random time from 0 to 5 seconds
3 import java.util.Random;
4
5 public class PrintTask
6 {
7 private final int sleepTime; // random sleep time for thread
8 private final String taskName; // name of task
9 private final static Random generator = new Random();

10
11 // constructor
12 public PrintTask(String name)
13 {
14 taskName = name; // set task name
15
16 // pick random sleep time between 0 and 5 seconds
17 sleepTime = generator.nextInt(5000); // milliseconds
18 } // end PrintTask constructor
19
20 // method run contains the code that a thread will execute
21
22 {
23 try // put thread to sleep for sleepTime amount of time
24 {
25 System.out.printf("%s going to sleep for %d milliseconds.\n",
26 taskName, sleepTime);
27
28 } // end try
29 catch (InterruptedException exception)
30 {
31 System.out.printf("%s %s\n", taskName,
32 "terminated prematurely due to interruption");
33 } // end catch
34
35 // print task name
36 System.out.printf("%s done sleeping\n", taskName);
37 } // end method run
38 } // end class PrintTask

Fig. 26.3 | PrintTask class sleeps for a random time from 0 to 5 seconds.

implements Runnable

public void run()

Thread.sleep(sleepTime); // put thread to sleep

26.3 Creating and Executing Threads with Executor Framework 1053

1 // Fig. 26.4: TaskExecutor.java
2 // Using an ExecutorService to execute Runnables.
3 import java.util.concurrent.Executors;
4 import java.util.concurrent.ExecutorService;
5
6 public class TaskExecutor
7 {
8 public static void main(String[] args)
9 {

10 // create and name each runnable
11 PrintTask task1 = new PrintTask("task1");
12 PrintTask task2 = new PrintTask("task2");
13 PrintTask task3 = new PrintTask("task3");
14
15 System.out.println("Starting Executor");
16
17 // create ExecutorService to manage threads
18
19
20 // start threads and place in runnable state
21
22
23
24
25 // shut down worker threads when their tasks complete
26
27
28 System.out.println("Tasks started, main ends.\n");
29 } // end main
30 } // end class TaskExecutor

Starting Executor
Tasks started, main ends

task1 going to sleep for 4806 milliseconds
task2 going to sleep for 2513 milliseconds
task3 going to sleep for 1132 milliseconds
task3 done sleeping
task2 done sleeping
task1 done sleeping

Starting Executor
task1 going to sleep for 3161 milliseconds.
task3 going to sleep for 532 milliseconds.
task2 going to sleep for 3440 milliseconds.
Tasks started, main ends.

task3 done sleeping
task1 done sleeping
task2 done sleeping

Fig. 26.4 | Using an ExecutorService to execute Runnables.

ExecutorService threadExecutor = Executors.newCachedThreadPool();

threadExecutor.execute(task1); // start task1
threadExecutor.execute(task2); // start task2
threadExecutor.execute(task3); // start task3

threadExecutor.shutdown();

1054 Chapter 26 Multithreading

Lines 21–23 each invoke the ExecutorService’s execute method, which executes the
Runnable passed to it as an argument (in this case a PrintTask) some time in the future.
The specified task may execute in one of the threads in the ExecutorService’s thread
pool, in a new thread created to execute it, or in the thread that called the execute

method—the ExecutorService manages these details. Method execute returns immedi-
ately from each invocation—the program does not wait for each PrintTask to finish. Line
26 calls ExecutorService method shutdown, which notifies the ExecutorService to stop
accepting new tasks, but continues executing tasks that have already been submitted. Once all
of the previously submitted Runnables have completed, the threadExecutor terminates.
Line 28 outputs a message indicating that the tasks were started and the main thread is fin-
ishing its execution.

The code in main executes in the main thread, a thread created by the JVM. The code
in the run method of PrintTask (lines 21–37 of Fig. 26.3) executes whenever the Exec-

utor starts each PrintTask—again, this is sometime after they’re passed to the Execu-

torService’s execute method (Fig. 26.4, lines 21–23). When main terminates, the
program itself continues running because there are still tasks that must finish executing.
The program will not terminate until these tasks complete.

The sample outputs show each task’s name and sleep time as the thread goes to sleep.
The thread with the shortest sleep time normally awakens first, indicates that it’s done
sleeping and terminates. In Section 26.8, we discuss multithreading issues that could pre-
vent the thread with the shortest sleep time from awakening first. In the first output, the
main thread terminates before any of the PrintTasks output their names and sleep times.
This shows that the main thread runs to completion before any of the PrintTasks gets a
chance to run. In the second output, all of the PrintTasks output their names and sleep
times before the main thread terminates. This shows that the PrintTasks started executing
before the main thread terminated. Also, notice in the second example output, task3 goes
to sleep before task2 last, even though we passed task2 to the ExecutorService’s exe-
cute method before task3. This illustrates the fact that we cannot predict the order in which
the tasks will start executing, even if we know the order in which they were created and started.

26.4 Thread Synchronization
When multiple threads share an object and it’s modified by one or more of them, indeter-
minate results may occur (as we’ll see in the examples) unless access to the shared object is
managed properly. If one thread is in the process of updating a shared object and another
thread also tries to update it, it’s unclear which thread’s update takes effect. When this
happens, the program’s behavior cannot be trusted—sometimes the program will produce
the correct results, and sometimes it won’t. In either case, there’ll be no indication that the
shared object was manipulated incorrectly.

The problem can be solved by giving only one thread at a time exclusive access to code
that manipulates the shared object. During that time, other threads desiring to manipulate
the object are kept waiting. When the thread with exclusive access to the object finishes
manipulating it, one of the threads that was waiting is allowed to proceed. This process,
called thread synchronization, coordinates access to shared data by multiple concurrent
threads. By synchronizing threads in this manner, you can ensure that each thread
accessing a shared object excludes all other threads from doing so simultaneously—this is
called mutual exclusion.

26.4 Thread Synchronization 1055

Monitors
A common way to perform synchronization is to use Java’s built-in monitors. Every object
has a monitor and a monitor lock (or intrinsic lock). The monitor ensures that its object’s
monitor lock is held by a maximum of only one thread at any time. Monitors and monitor
locks can thus be used to enforce mutual exclusion. If an operation requires the executing
thread to hold a lock while the operation is performed, a thread must acquire the lock be-
fore proceeding with the operation. Other threads attempting to perform an operation
that requires the same lock will be blocked until the first thread releases the lock, at which
point the blocked threads may attempt to acquire the lock and proceed with the operation.

To specify that a thread must hold a monitor lock to execute a block of code, the code
should be placed in a synchronized statement. Such code is said to be guarded by the
monitor lock; a thread must acquire the lock to execute the guarded statements. The mon-
itor allows only one thread at a time to execute statements within synchronized state-
ments that lock on the same object, as only one thread at a time can hold the monitor lock.
The synchronized statements are declared using the synchronized keyword:

where object is the object whose monitor lock will be acquired; object is normally this if
it’s the object in which the synchronized statement appears. If several synchronized
statements are trying to execute on an object at the same time, only one of them may be
active on the object—all the other threads attempting to enter a synchronized statement
on the same object are placed in the blocked state.

When a synchronized statement finishes executing, the object’s monitor lock is
released and one of the blocked threads attempting to enter a synchronized statement can
be allowed to acquire the lock to proceed. Java also allows synchronized methods. Before
executing, a non-static synchronized method must acquire the lock on the object that’s
used to call the method. Similary, a static synchronized method must acquire the lock
on the class that’s used to call the method.

26.4.1 Unsynchronized Data Sharing
First, we illustrate the dangers of sharing an object across threads without proper synchro-
nization. In this example, two Runnables maintain references to a single integer array.
Each Runnable writes three values to the array, then terminates. This may seem harmless,
but we’ll see that it can result in errors if the array is manipulated without synchronization.

Class SimpleArray
A SimpleArray object (Fig. 26.5) will be shared across multiple threads. SimpleArray will
enable those threads to place int values into array (declared at line 8). Line 9 initializes
variable writeIndex, which will be used to determine the array element that should be
written to next. The constructor (lines 13–16) creates an integer array of the desired size.

Method add (lines 19–40) allows new values to be inserted at the end of the array.
Line 21 stores the current writeIndex value. Line 26 puts the thread that invokes add to
sleep for a random interval from 0 to 499 milliseconds. This is done to make the problems
associated with unsynchronized access to shared data more obvious. After the thread is done

synchronized (object)
{

statements
} // end synchronized statement

1056 Chapter 26 Multithreading

sleeping, line 34 inserts the value passed to add into the array at the element specified by
position. Lines 35–36 output a message indicating the executing thread’s name, the value
that was inserted in the array and where it was inserted. The expression Thread.current-

Thread.getName() (line 36) first obtains a reference to the currently executing Thread,

1 // Fig. 26.5: SimpleArray.java
2 // Class that manages an integer array to be shared by multiple threads.
3 import java.util.Arrays;
4 import java.util.Random;
5
6 public class SimpleArray // CAUTION: NOT THREAD SAFE!
7 {
8 private final int[] array; // the shared integer array
9 private int writeIndex = 0; // index of next element to be written

10 private final static Random generator = new Random();
11
12 // construct a SimpleArray of a given size
13 public SimpleArray(int size)
14 {
15 array = new int[size];
16 } // end constructor
17
18 // add a value to the shared array
19 public void add(int value)
20 {
21
22
23 try
24 {
25 // put thread to sleep for 0-499 milliseconds
26 Thread.sleep(generator.nextInt(500));
27 } // end try
28 catch (InterruptedException ex)
29 {
30 ex.printStackTrace();
31 } // end catch
32
33
34
35 System.out.printf("%s wrote %2d to element %d.\n",
36 Thread.currentThread().getName(), value, position);
37
38
39 System.out.printf("Next write index: %d\n", writeIndex);
40 } // end method add
41
42 // used for outputting the contents of the shared integer array
43 public String toString()
44 {
45 return "\nContents of SimpleArray:\n" + Arrays.toString(array);
46 } // end method toString
47 } // end class SimpleArray

Fig. 26.5 | Class that manages an integer array to be shared by multiple threads.

int position = writeIndex; // store the write index

// put value in the appropriate element
array[position] = value;

++writeIndex; // increment index of element to be written next

26.4 Thread Synchronization 1057

then uses that Thread’s getName method to obtain its name. Line 38 increments
writeIndex so that the next call to add will insert a value in the array’s next element. Lines
43–46 override method toString to create a String representation of the array’s contents.

Class ArrayWriter
Class ArrayWriter (Fig. 26.6) implements the interface Runnable to define a task for in-
serting values in a SimpleArray object. The constructor (lines 10–14) takes two argu-
ments—an integer value, which is the first value this task will insert in the SimpleArray

object, and a reference to the SimpleArray object. Line 20 invokes method add on the
SimpleArray object. The task completes after three consecutive integers beginning with
startValue are added to the SimpleArray object.

Class SharedArrayTest
Class SharedArrayTest (Fig. 26.7) executes two ArrayWriter tasks that add values to a
single SimpleArray object. Line 12 constructs a six-element SimpleArray object. Lines
15–16 create two new ArrayWriter tasks, one that places the values 1–3 in the Simple-

Array object, and one that places the values 11–13. Lines 19–21 create an ExecutorSer-

vice and execute the two ArrayWriters. Line 23 invokes the ExecutorService’s
shutDown method to prevent additional tasks from starting and to enable the application to
terminate when the currently executing tasks complete execution.

Recall that ExecutorService method shutdown returns immediately. Thus any code
that appears after the call to ExecutorService method shutdown in line 23 will continue
executing as long as the main thread is still assigned to a processor. We’d like to output the
SimpleArray object to show you the results after the threads complete their tasks. So, we

1 // Fig. 26.6: ArrayWriter.java
2 // Adds integers to an array shared with other Runnables
3 import java.lang.Runnable;
4
5 public class ArrayWriter implements Runnable
6 {
7 private final SimpleArray sharedSimpleArray;
8 private final int startValue;
9

10 public ArrayWriter(int value, SimpleArray array)
11 {
12 startValue = value;
13 sharedSimpleArray = array;
14 } // end constructor
15
16 public void run()
17 {
18 for (int i = startValue; i < startValue + 3; i++)
19 {
20 sharedSimpleArray.add(i); // add an element to the shared array
21 } // end for
22 } // end method run
23 } // end class ArrayWriter

Fig. 26.6 | Adds integers to an array shared with other Runnables.

1058 Chapter 26 Multithreading

need the program to wait for the threads to complete before main outputs the SimpleArray
object’s contents. Interface ExecutorService provides the awaitTermination method for
this purpose. This method returns control to its caller either when all tasks executing in
the ExecutorService complete or when the specified timeout elapses. If all tasks are com-
pleted before awaitTermination times out, this method returns true; otherwise it returns
false. The two arguments to awaitTermination represent a timeout value and a unit of
measure specified with a constant from class TimeUnit (in this case, TimeUnit.MINUTES).

1 // Fig 26.7: SharedArrayTest.java
2 // Executes two Runnables to add elements to a shared SimpleArray.
3 import java.util.concurrent.Executors;
4 import java.util.concurrent.ExecutorService;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedArrayTest
8 {
9 public static void main(String[] arg)

10 {
11 // construct the shared object
12 SimpleArray sharedSimpleArray = new SimpleArray(6);
13
14 // create two tasks to write to the shared SimpleArray
15 ArrayWriter writer1 = new ArrayWriter(1, sharedSimpleArray);
16 ArrayWriter writer2 = new ArrayWriter(11, sharedSimpleArray);
17
18 // execute the tasks with an ExecutorService
19 ExecutorService executor = Executors.newCachedThreadPool();
20 executor.execute(writer1);
21 executor.execute(writer2);
22
23 executor.shutdown();
24
25 try
26 {
27 // wait 1 minute for both writers to finish executing
28 boolean tasksEnded = executor.awaitTermination(
29 1, TimeUnit.MINUTES);
30
31 if (tasksEnded)
32 System.out.println(sharedSimpleArray); // print contents
33 else
34 System.out.println(
35 "Timed out while waiting for tasks to finish.");
36 } // end try
37 catch (InterruptedException ex)
38 {
39 System.out.println(
40 "Interrupted while waiting for tasks to finish.");
41 } // end catch
42 } // end main
43 } // end class SharedArrayTest

Fig. 26.7 | Executes two Runnables to insert values in a shared array. (Part 1 of 2.)

26.4 Thread Synchronization 1059

In this example, if both tasks complete before awaitTermination times out, line 32
displays the SimpleArray object’s contents. Otherwise, lines 34–35 print a message indi-
cating that the tasks did not finish executing before awaitTermination timed out.

The output in Fig. 26.7 demonstrates the problems (highlighted in the output) that can
be caused by failure to synchronize access to shared data. The value 1 was written to element 0,
then overwritten later by the value 11. Also, when writeIndex was incremented to 3, nothing
was written to that element, as indicated by the 0 in that element of the printed array.

Recall that we added calls to Thread method sleep between operations on the shared
data to emphasize the unpredictability of thread scheduling and increase the likelihood of
producing erroneous output. Even if these operations were allowed to proceed at their
normal pace, you could still see errors in the program’s output. However, modern proces-
sors can handle the simple operations of the SimpleArray method add so quickly that you
might not see the errors caused by the two threads executing this method concurrently,
even if you tested the program dozens of times. One of the challenges of multithreaded pro-
gramming is spotting the errors—they may occur so infrequently that a broken program does not
produce incorrect results during testing, creating the illusion that the program is correct.

26.4.2 Synchronized Data Sharing—Making Operations Atomic
The output errors of Fig. 26.7 can be attributed to the fact that the shared object, Simple-
Array, is not thread safe—SimpleArray is susceptible to errors if it’s accessed concurrently
by multiple threads. The problem lies in method add, which stores the value of writeIndex,
places a new value in that element, then increments writeIndex. Such a method would
present no problem in a single-threaded program. However, if one thread obtains the value
of writeIndex, there’s no guarantee that another thread cannot come along and increment
writeIndex before the first thread has had a chance to place a value in the array. If this hap-
pens, the first thread will be writing to the array based on a stale value of writeIndex—a
value that’s no longer valid. Another possibility is that one thread might obtain the value
of writeIndex after another thread adds an element to the array but before writeIndex is
incremented. In this case, too, the first thread would write to the array based on an invalid
value for writeIndex.

Next write index: 1
pool-1-thread-1 wrote 2 to element 1.
Next write index: 2
pool-1-thread-1 wrote 3 to element 2.
Next write index: 3

Next write index: 4
pool-1-thread-2 wrote 12 to element 4.
Next write index: 5
pool-1-thread-2 wrote 13 to element 5.
Next write index: 6

Contents of SimpleArray:
[11, 2, 3, 0, 12, 13]

Fig. 26.7 | Executes two Runnables to insert values in a shared array. (Part 2 of 2.)

pool-1-thread-1 wrote 1 to element 0.

First pool-1-thread-1 wrote the value
1 to element 0. Later pool-1-thread-2
wrote the value 11 to element 0, thus
overwriting the previously stored value.

pool-1-thread-2 wrote 11 to element 0.

1060 Chapter 26 Multithreading

SimpleArray is not thread safe because it allows any number of threads to read and modify
shared data concurrently, which can cause errors. To make SimpleArray thread safe, we
must ensure that no two threads can access it at the same time. We also must ensure that
while one thread is in the process of storing writeIndex, adding a value to the array, and
incrementing writeIndex, no other thread may read or change the value of writeIndex
or modify the contents of the array at any point during these three operations. In other
words, we want these three operations—storing writeIndex, writing to the array, incre-
menting writeIndex—to be an atomic operation, which cannot be divided into smaller
suboperations. We can simulate atomicity by ensuring that only one thread carries out the
three operations at a time. Any other threads that need to perform the operation must wait
until the first thread has finished the add operation in its entirety.

Atomicity can be achieved using the synchronized keyword. By placing our three
suboperations in a synchronized statement or synchronized method, we allow only one
thread at a time to acquire the lock and perform the operations. When that thread has
completed all of the operations in the synchronized block and releases the lock, another
thread may acquire the lock and begin executing the operations. This ensures that a thread
executing the operations will see the actual values of the shared data and that these values
will not change unexpectedly in the middle of the operations as a result of another thread’s mod-
ifying them.

Class SimpleArray with Synchronization
Figure 26.8 displays class SimpleArray with the proper synchronization. Notice that it’s
identical to the SimpleArray class of Fig. 26.5, except that add is now a synchronized

method (line 20). So, only one thread at a time can execute this method. We reuse classes
ArrayWriter (Fig. 26.6) and SharedArrayTest (Fig. 26.7) from the previous example.

Software Engineering Observation 26.2
Place all accesses to mutable data that may be shared by multiple threads inside
synchronized statements or synchronized methods that synchronize on the same lock.
When performing multiple operations on shared data, hold the lock for the entirety of the
operation to ensure that the operation is effectively atomic.

1 // Fig. 26.8: SimpleArray.java
2 // Class that manages an integer array to be shared by multiple
3 // threads with synchronization.
4 import java.util.Arrays;
5 import java.util.Random;
6
7 public class SimpleArray
8 {
9 private final int[] array; // the shared integer array

10 private int writeIndex = 0; // index of next element to be written
11 private final static Random generator = new Random();
12

Fig. 26.8 | Class that manages an integer array to be shared by multiple threads with
synchronization. (Part 1 of 2.)

26.4 Thread Synchronization 1061

13 // construct a SimpleArray of a given size
14 public SimpleArray(int size)
15 {
16 array = new int[size];
17 } // end constructor
18
19 // add a value to the shared array
20
21 {
22 int position = writeIndex; // store the write index
23
24 try
25 {
26 // put thread to sleep for 0-499 milliseconds
27 Thread.sleep(generator.nextInt(500));
28 } // end try
29 catch (InterruptedException ex)
30 {
31 ex.printStackTrace();
32 } // end catch
33
34 // put value in the appropriate element
35 array[position] = value;
36 System.out.printf("%s wrote %2d to element %d.\n",
37 Thread.currentThread().getName(), value, position);
38
39 ++writeIndex; // increment index of element to be written next
40 System.out.printf("Next write index: %d\n", writeIndex);
41 } // end method add
42
43 // used for outputting the contents of the shared integer array
44 public String toString()
45 {
46 return "\nContents of SimpleArray:\n" + Arrays.toString(array);
47 } // end method toString
48 } // end class SimpleArray

pool-1-thread-1 wrote 1 to element 0.
Next write index: 1
pool-1-thread-2 wrote 11 to element 1.
Next write index: 2
pool-1-thread-2 wrote 12 to element 2.
Next write index: 3
pool-1-thread-2 wrote 13 to element 3.
Next write index: 4
pool-1-thread-1 wrote 2 to element 4.
Next write index: 5
pool-1-thread-1 wrote 3 to element 5.
Next write index: 6

Contents of SimpleArray:
1 11 12 13 2 3

Fig. 26.8 | Class that manages an integer array to be shared by multiple threads with
synchronization. (Part 2 of 2.)

public synchronized void add(int value)

1062 Chapter 26 Multithreading

Line 20 declares method as synchronized, making all of the operations in this
method behave as a single, atomic operation. Line 22 performs the first suboperation—
storing the value of writeIndex. Line 35 defines the second suboperation, writing an ele-
ment to the element at the index position. Line 39 increments writeIndex. When the
method finishes executing at line 41, the executing thread implicitly releases the Simple-

Array lock, making it possible for another thread to begin executing the add method.
In the synchronized add method, we print messages to the console indicating the

progress of threads as they execute this method, in addition to performing the actual oper-
ations required to insert a value in the array. We do this so that the messages will be printed
in the correct order, allowing us to see whether the method is properly synchronized by
comparing these outputs with those of the previous, unsynchronized example. We con-
tinue to output messages from synchronized blocks in later examples for demonstration
purposes only; typically, however, I/O should not be performed in synchronized blocks,
because it’s important to minimize the amount of time that an object is “locked.” Also,
line 27 in this example calls Thread method sleep to emphasize the unpredictability of
thread scheduling. You should never call sleep while holding a lock in a real application.

Another note on thread safety: We’ve said that it’s necessary to synchronize access to
all data that may be shared across multiple threads. Actually, this synchronization is nec-
essary only for mutable data, or data that may change in its lifetime. If the shared data will
not change in a multithreaded program, then it’s not possible for a thread to see old or
incorrect values as a result of another thread’s manipulating that data.

When you share immutable data across threads, declare the corresponding data fields
final to indicate that the values of the variables will not change after they’re initialized.
This prevents accidental modification of the shared data later in a program, which could
compromise thread safety. Labeling object references as final indicates that the reference will
not change, but it does not guarantee that the object itself is immutable—this depends entirely
on the object’s properties. However, it’s still good practice to mark references that will not
change as final, as doing so forces the object’s constructor to be atomic—the object will
be fully constructed with all its fields initialized before the program accesses it.

26.5 Producer/Consumer Relationship without
Synchronization
In a producer/consumer relationship, the producer portion of an application generates
data and stores it in a shared object, and the consumer portion of the application reads data

Performance Tip 26.2
Keep the duration of synchronized statements as short as possible while maintaining the
needed synchronization. This minimizes the wait time for blocked threads. Avoid per-
forming I/O, lengthy calculations and operations that do not require synchronization
while holding a lock.

Good Programming Practice 26.1
Always declare data fields that you do not expect to change as final. Primitive variables that
are declared as final can safely be shared across threads. An object reference that’s declared
as final ensures that the object it refers to will be fully constructed and initialized before it’s
used by the program, and prevents the reference from pointing to another object.

26.5 Producer/Consumer Relationship without Synchronization 1063

from the shared object. The producer/consumer relationship separates the task of identify-
ing work to be done from the tasks involved in actually carrying out the work. One exam-
ple of a common producer/consumer relationship is print spooling. Although a printer
might not be available when you want to print from an application (i.e., the producer),
you can still “complete” the print task, as the data is temporarily placed on disk until the
printer becomes available. Similarly, when the printer (i.e., a consumer) is available, it
doesn’t have to wait until a current user wants to print. The spooled print jobs can be
printed as soon as the printer becomes available. Another example of the producer/con-
sumer relationship is an application that copies data onto DVDs by placing data in a fixed-
size buffer, which is emptied as the DVD drive “burns” the data onto the DVD.

In a multithreaded producer/consumer relationship, a producer thread generates
data and places it in a shared object called a buffer. A consumer thread reads data from
the buffer. This relationship requires synchronization to ensure that values are produced
and consumed properly. All operations on mutable data that’s shared by multiple threads
(e.g., the data in the buffer) must be guarded with a lock to prevent corruption, as dis-
cussed in Section 26.4. Operations on the buffer data shared by a producer and consumer
thread are also state dependent—the operations should proceed only if the buffer is in
the correct state. If the buffer is in a not-full state, the producer may produce; if the buffer
is in a not-empty state, the consumer may consume. All operations that access the buffer
must use synchronization to ensure that data is written to the buffer or read from the
buffer only if the buffer is in the proper state. If the producer attempting to put the next
data into the buffer determines that it’s full, the producer thread must wait until there’s
space to write a new value. If a consumer thread finds the buffer empty or finds that the
previous data has already been read, the consumer must also wait for new data to become
available.

Consider how logic errors can arise if we do not synchronize access among multiple
threads manipulating shared data. Our next example (Fig. 26.9–Fig. 26.13) implements a
producer/consumer relationship without the proper synchronization. A producer thread
writes the numbers 1 through 10 into a shared buffer—a single memory location shared
between two threads (a single int variable called buffer in line 6 of Fig. 26.12 in this
example). The consumer thread reads this data from the shared buffer and displays the
data. The program’s output shows the values that the producer writes (produces) into the
shared buffer and the values that the consumer reads (consumes) from the shared buffer.

Each value the producer thread writes to the shared buffer must be consumed exactly
once by the consumer thread. However, the threads in this example are not synchronized.
Therefore, data can be lost or garbled if the producer places new data into the shared buffer
before the consumer reads the previous data. Also, data can be incorrectly duplicated if the
consumer consumes data again before the producer produces the next value. To show
these possibilities, the consumer thread in the following example keeps a total of all the
values it reads. The producer thread produces values from 1 through 10. If the consumer
reads each value produced once and only once, the total will be 55. However, if you exe-
cute this program several times, you’ll see that the total is not always 55 (as shown in the
outputs in Fig. 26.13). To emphasize the point, the producer and consumer threads in the
example each sleep for random intervals of up to three seconds between performing their
tasks. Thus, we do not know when the producer thread will attempt to write a new value,
or when the consumer thread will attempt to read a value.

1064 Chapter 26 Multithreading

Implementing the Producer/Consumer Relationship
The program consists of interface Buffer (Fig. 26.9) and classes Producer (Fig. 26.10),
Consumer (Fig. 26.11), UnsynchronizedBuffer (Fig. 26.12) and SharedBufferTest

(Fig. 26.13). Interface Buffer (Fig. 26.9) declares methods set (line 6) and get (line 9)
that a Buffer (such as UnsynchronizedBuffer) must implement to enable the Producer

thread to place a value in the Buffer and the Consumer thread to retrieve a value from the
Buffer, respectively. In subsequent examples, methods set and get will call methods that
throw InterruptedExceptions. We declare each method with a throws clause here so that
we don’t have to modify this interface for the later examples.

Class Producer (Fig. 26.10) implements the Runnable interface, allowing it to be exe-
cuted as a task in a separate thread. The constructor (lines 11–14) initializes the Buffer ref-
erence sharedLocation with an object created in main (line 14 of Fig. 26.13) and passed
to the constructor. As we’ll see, this is an UnsynchronizedBuffer object that implements
interface Buffer without synchronizing access to the shared object. The Producer thread in
this program executes the tasks specified in the method run (lines 17–39). Each iteration of
the loop (lines 21–35) invokes Thread method sleep (line 25) to place the Producer thread
into the timed waiting state for a random time interval between 0 and 3 seconds. When the
thread awakens, line 26 passes the value of control variable count to the Buffer object’s set
method to set the shared buffer’s value. Lines 27–28 keep a total of all the values produced
so far and output that value. When the loop completes, lines 37–38 display a message indi-
cating that the Producer has finished producing data and is terminating. Next, method run

terminates, which indicates that the Producer completed its task. Any method called from
a Runnable’s run method (e.g., Buffer method set) executes as part of that task’s thread of
execution. This fact becomes important in Sections 26.6–26.8 when we add synchroniza-
tion to the producer/consumer relationship.

1 // Fig. 26.9: Buffer.java
2 // Buffer interface specifies methods called by Producer and Consumer.
3 public interface Buffer
4 {
5 // place int value into Buffer
6 public void set(int value) throws InterruptedException;
7
8 // return int value from Buffer
9 public int get() throws InterruptedException;

10 } // end interface Buffer

Fig. 26.9 | Buffer interface specifies methods called by Producer and Consumer.

1 // Fig. 26.10: Producer.java
2 // Producer with a run method that inserts the values 1 to 10 in buffer.
3 import java.util.Random;
4
5
6 {

Fig. 26.10 | Producer with a run method that inserts the values 1 to 10 in buffer. (Part 1 of 2.)

public class Producer implements Runnable

26.5 Producer/Consumer Relationship without Synchronization 1065

Class Consumer (Fig. 26.11) also implements interface Runnable, allowing the Con-

sumer to execute concurrently with the Producer. Lines 11–14 initialize Buffer reference
sharedLocation with an object that implements the Buffer interface (created in main,
Fig. 26.13) and passed to the constructor as the parameter shared. As we’ll see, this is the
same UnsynchronizedBuffer object that’s used to initialize the Producer object—thus,
the two threads share the same object. The Consumer thread in this program performs the
tasks specified in method run (lines 17–39). Lines 21–35 iterate 10 times. Each iteration
invokes Thread method sleep (line 26) to put the Consumer thread into the timed waiting
state for up to 3 seconds. Next, line 27 uses the Buffer’s get method to retrieve the value
in the shared buffer, then adds the value to variable sum. Line 28 displays the total of all
the values consumed so far. When the loop completes, lines 37–38 display a line indicating
the sum of the consumed values. Then method run terminates, which indicates that the
Consumer completed its task. Once both threads enter the terminated state, the program
ends.

7 private final static Random generator = new Random();
8 private final Buffer sharedLocation; // reference to shared object
9

10 // constructor
11 public Producer(Buffer shared)
12 {
13 sharedLocation = shared;
14 } // end Producer constructor
15
16
17
18
19 int sum = 0;
20
21 for (int count = 1; count <= 10; count++)
22 {
23 try // sleep 0 to 3 seconds, then place value in Buffer
24 {
25
26 sharedLocation.set(count); // set value in buffer
27 sum += count; // increment sum of values
28 System.out.printf("\t%2d\n", sum);
29 } // end try
30 // if lines 25 or 26 get interrupted, print stack trace
31 catch (InterruptedException exception)
32 {
33 exception.printStackTrace();
34 } // end catch
35 } // end for
36
37 System.out.println(
38 "Producer done producing\nTerminating Producer");
39
40 } // end class Producer

Fig. 26.10 | Producer with a run method that inserts the values 1 to 10 in buffer. (Part 2 of 2.)

// store values from 1 to 10 in sharedLocation
public void run()
{

Thread.sleep(generator.nextInt(3000)); // random sleep

} // end method run

1066 Chapter 26 Multithreading

[Note: We call method sleep in method run of the Producer and Consumer classes to
emphasize the fact that, in multithreaded applications, it’s unpredictable when each thread will
perform its task and for how long it will perform the task when it has a processor. Normally,
these thread scheduling issues are beyond the control of the Java developer. In this program,
our thread’s tasks are quite simple—the Producer writes the values 1 to 10 to the buffer,
and the Consumer reads 10 values from the buffer and adds each value to variable sum.
Without the sleep method call, and if the Producer executes first, given today’s phenom-
enally fast processors, the Producer would likely complete its task before the Consumer got
a chance to execute. If the Consumer executed first, it would likely consume garbage data
ten times, then terminate before the Producer could produce the first real value.]

1 // Fig. 26.11: Consumer.java
2 // Consumer with a run method that loops, reading 10 values from buffer.
3 import java.util.Random;
4
5
6 {
7 private final static Random generator = new Random();
8 private final Buffer sharedLocation; // reference to shared object
9

10 // constructor
11 public Consumer(Buffer shared)
12 {
13 sharedLocation = shared;
14 } // end Consumer constructor
15
16
17
18
19 int sum = 0;
20
21 for (int count = 1; count <= 10; count++)
22 {
23 // sleep 0 to 3 seconds, read value from buffer and add to sum
24 try
25 {
26
27 sum += sharedLocation.get();
28 System.out.printf("\t\t\t%2d\n", sum);
29 } // end try
30 // if lines 26 or 27 get interrupted, print stack trace
31 catch (InterruptedException exception)
32 {
33 exception.printStackTrace();
34 } // end catch
35 } // end for
36
37 System.out.printf("\n%s %d\n%s\n",
38 "Consumer read values totaling", sum, "Terminating Consumer");
39
40 } // end class Consumer

Fig. 26.11 | Consumer with a run method that loops, reading 10 values from buffer.

public class Consumer implements Runnable

// read sharedLocation's value 10 times and sum the values
public void run()
{

Thread.sleep(generator.nextInt(3000));

} // end method run

26.5 Producer/Consumer Relationship without Synchronization 1067

Class UnsynchronizedBuffer (Fig. 26.12) implements interface Buffer (line 4). An
object of this class is shared between the Producer and the Consumer. Line 6 declares
instance variable buffer and initializes it with the value –1. This value is used to demon-
strate the case in which the Consumer attempts to consume a value before the Producer ever
places a value in buffer. Methods set (lines 9–13) and get (lines 16–20) do not synchro-
nize access to the field buffer. Method set simply assigns its argument to buffer (line
12), and method get simply returns the value of buffer (line 19).

In class SharedBufferTest (Fig. 26.13), line 11 creates an ExecutorService to exe-
cute the Producer and Consumer Runnables. Line 14 creates an UnsynchronizedBuffer

object and assigns it to Buffer variable sharedLocation. This object stores the data that
the Producer and Consumer threads will share. Lines 23–24 create and execute the Pro-

ducer and Consumer. The Producer and Consumer constructors are each passed the same
Buffer object (sharedLocation), so each object is initialized with a reference to the same
Buffer. These lines also implicitly launch the threads and call each Runnable’s run

method. Finally, line 26 calls method shutdown so that the application can terminate
when the threads executing the Producer and Consumer complete their tasks. When main

terminates (line 27), the main thread of execution enters the terminated state.

1 // Fig. 26.12: UnsynchronizedBuffer.java
2 // UnsynchronizedBuffer maintains the shared integer that is accessed by
3 // a producer thread and a consumer thread via methods set and get.
4 public class UnsynchronizedBuffer implements Buffer
5 {
6
7
8 // place value into buffer
9 public void set(int value) throws InterruptedException

10 {
11 System.out.printf("Producer writes\t%2d", value);
12
13 } // end method set
14
15 // return value from buffer
16 public int get() throws InterruptedException
17 {
18 System.out.printf("Consumer reads\t%2d", buffer);
19
20 } // end method get
21 } // end class UnsynchronizedBuffer

Fig. 26.12 | UnsynchronizedBuffer maintains the shared integer that is accessed by a
producer thread and a consumer thread via methods set and get.

1 // Fig. 26.13: SharedBufferTest.java
2 // Application with two threads manipulating an unsynchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;

Fig. 26.13 | Application with two threads manipulating an unsynchronized buffer. (Part 1 of 3.)

private int buffer = -1; // shared by producer and consumer threads

buffer = value;

return buffer;

1068 Chapter 26 Multithreading

5
6 public class SharedBufferTest
7 {
8 public static void main(String[] args)
9 {

10 // create new thread pool with two threads
11 ExecutorService application = Executors.newCachedThreadPool();
12
13
14
15
16 System.out.println(
17 "Action\t\tValue\tSum of Produced\tSum of Consumed");
18 System.out.println(
19 "------\t\t-----\t---------------\t---------------\n");
20
21 // execute the Producer and Consumer, giving each of them access
22 // to sharedLocation
23
24
25
26 application.shutdown(); // terminate application when tasks complete
27 } // end main
28 } // end class SharedBufferTest

Action Value Sum of Produced Sum of Consumed
------ ----- --------------- ---------------

Producer writes 1 1

Consumer reads 3 3
Producer writes 4 10
Consumer reads 4 7
Producer writes 5 15

Consumer reads 7 14

Producer writes 8 36
Consumer reads 8 29

Producer writes 9 45

Producer done producing
Terminating Producer
Consumer reads 10 47

Consumer read values totaling 77
Terminating Consumer

Fig. 26.13 | Application with two threads manipulating an unsynchronized buffer. (Part 2 of 3.)

// create UnsynchronizedBuffer to store ints
Buffer sharedLocation = new UnsynchronizedBuffer();

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

Producer writes 2 3 1 is lost
2 is lost

5 is lost
6 is lost

7 read again

8 read again

9 is lost

10 read again
10 read again
10 read again

Producer writes 3 6

Producer writes 6 21
Producer writes 7 28

Consumer reads 7 21

Consumer reads 8 37

Producer writes 10 55

Consumer reads 10 57
Consumer reads 10 67
Consumer reads 10 77

26.5 Producer/Consumer Relationship without Synchronization 1069

Recall from the overview of this example that we would like the Producer to execute
first and every value produced by the Producer to be consumed exactly once by the
Consumer. However, when we study the first output of Fig. 26.13, we see that the Pro-

ducer writes the values 1, 2 and 3 before the Consumer reads its first value (3). Therefore,
the values 1 and 2 are lost. Later, the values 5, 6 and 9 are lost, while 7 and 8 are read twice
and 10 is read four times. So the first output produces an incorrect total of 77, instead of
the correct total of 55. In the second output, the Consumer reads the value -1 before the
Producer ever writes a value. The Consumer reads the value 1 five times before the Pro-

ducer writes the value 2. Meanwhile, the values 5, 7, 8, 9 and 10 are all lost—the last four
because the Consumer terminates before the Producer. An incorrect consumer total of 19
is displayed. (Lines in the output where the Producer or Consumer has acted out of order
are highlighted.)

To solve the problems of lost and duplicated data, Section 26.6 presents an example
in which we use an ArrayBlockingQueue (from package java.util.concurrent) to syn-
chronize access to the shared object, guaranteeing that each and every value will be pro-
cessed once and only once.

Action Value Sum of Produced Sum of Consumed
------ ----- --------------- ---------------

Producer writes 1 1
Consumer reads 1 0

Producer writes 2 3
Consumer reads 2 6
Producer writes 3 6
Consumer reads 3 9
Producer writes 4 10
Consumer reads 4 13
Producer writes 5 15

Consumer reads 6 19

Consumer read values totaling 19
Terminating Consumer

Producer done producing
Terminating Producer

Error-Prevention Tip 26.1
Access to a shared object by concurrent threads must be controlled carefully or a program
may produce incorrect results.

Fig. 26.13 | Application with two threads manipulating an unsynchronized buffer. (Part 3 of 3.)

Consumer reads -1 -1 reads -1 bad data

1 read again
1 read again
1 read again
1 read again

10 never read

5 is lost

7 never read
8 never read
9 never read

Consumer reads 1 1
Consumer reads 1 2
Consumer reads 1 3
Consumer reads 1 4

Producer writes 6 21

Producer writes 7 28
Producer writes 8 36
Producer writes 9 45
Producer writes 10 55

1070 Chapter 26 Multithreading

26.6 Producer/Consumer Relationship:
ArrayBlockingQueue
One way to synchronize producer and consumer threads is to use classes from Java’s con-
currency package that encapsulate the synchronization for you. Java includes the class
ArrayBlockingQueue (from package java.util.concurrent)—a fully implemented,
thread-safe buffer class that implements interface BlockingQueue. This interface extends
the Queue interface discussed in Chapter 20 and declares methods put and take, the
blocking equivalents of Queue methods offer and poll, respectively. Method put places
an element at the end of the BlockingQueue, waiting if the queue is full. Method take

removes an element from the head of the BlockingQueue, waiting if the queue is empty.
These methods make class ArrayBlockingQueue a good choice for implementing a shared
buffer. Because method put blocks until there’s room in the buffer to write data, and
method take blocks until there’s new data to read, the producer must produce a value
first, the consumer correctly consumes only after the producer writes a value and the pro-
ducer correctly produces the next value (after the first) only after the consumer reads the
previous (or first) value. ArrayBlockingQueue stores the shared data in an array. The ar-
ray’s size is specified as an argument to the ArrayBlockingQueue constructor. Once cre-
ated, an ArrayBlockingQueue is fixed in size and will not expand to accommodate extra
elements.

Figures 26.14–26.15 demonstrate a Producer and a Consumer accessing an Array-

BlockingQueue. Class BlockingBuffer (Fig. 26.14) uses an ArrayBlockingQueue object
that stores an Integer (line 7). Line 11 creates the ArrayBlockingQueue and passes 1 to
the constructor so that the object holds a single value, as we did with the Unsynchronized-
Buffer of Fig. 26.12. Lines 7 and 11 use generics, which we discussed in Chapters 20–21.
We discuss multiple-element buffers in Section 26.8. Because our BlockingBuffer class
uses the thread-safe ArrayBlockingQueue class to manage access to the shared buffer,
BlockingBuffer is itself thread safe, even though we have not implemented the synchro-
nization ourselves.

1 // Fig. 26.14: BlockingBuffer.java
2 // Creating a synchronized buffer using an ArrayBlockingQueue.
3 import java.util.concurrent.ArrayBlockingQueue;
4
5 public class BlockingBuffer implements Buffer
6 {
7
8
9 public BlockingBuffer()

10 {
11
12 } // end BlockingBuffer constructor
13
14 // place value into buffer
15 public void set(int value) throws InterruptedException
16 {
17

Fig. 26.14 | Creating a synchronized buffer using an ArrayBlockingQueue. (Part 1 of 2.)

private final ArrayBlockingQueue<Integer> buffer; // shared buffer

buffer = new ArrayBlockingQueue<Integer>(1);

buffer.put(value); // place value in buffer

26.6 Producer/Consumer Relationship: ArrayBlockingQueue 1071

BlockingBuffer implements interface Buffer (Fig. 26.9) and uses classes Producer
(Fig. 26.10 modified to remove line 28) and Consumer (Fig. 26.11 modified to remove
line 28) from the example in Section 26.5. This approach demonstrates that the threads
accessing the shared object are unaware that their buffer accesses are now synchronized. The
synchronization is handled entirely in the set and get methods of BlockingBuffer by
calling the synchronized ArrayBlockingQueue methods put and take, respectively. Thus,
the Producer and Consumer Runnables are properly synchronized simply by calling the
shared object’s set and get methods.

Line 17 in method set (Fig. 26.14, lines 15–20) calls the ArrayBlockingQueue

object’s put method. This method call blocks if necessary until there’s room in the buffer
to place the value. Method get (lines 23–30) calls the ArrayBlockingQueue object’s take
method (line 25). This method call blocks if necessary until there’s an element in the
buffer to remove. Lines 18–19 and 26–27 use the ArrayBlockingQueue object’s size

method to display the total number of elements currently in the ArrayBlockingQueue.
Class BlockingBufferTest (Fig. 26.15) contains the main method that launches the

application. Line 12 creates an ExecutorService, and line 15 creates a BlockingBuffer

object and assigns its reference to the Buffer variable sharedLocation. Lines 17–18 exe-
cute the Producer and Consumer Runnables. Line 19 calls method shutdown to end the
application when the threads finish executing the Producer and Consumer tasks.

18 System.out.printf("%s%2d\t%s%d\n", "Producer writes ", value,
19 "Buffer cells occupied: ", buffer.size());
20 } // end method set
21
22 // return value from buffer
23 public int get() throws InterruptedException
24 {
25
26 System.out.printf("%s %2d\t%s%d\n", "Consumer reads ",
27 readValue, "Buffer cells occupied: ", buffer.size());
28
29 return readValue;
30 } // end method get
31 } // end class BlockingBuffer

1 // Fig. 26.15: BlockingBufferTest.java
2 // Two threads manipulating a blocking buffer that properly
3 // implements the producer/consumer relationship.
4 import java.util.concurrent.ExecutorService;
5 import java.util.concurrent.Executors;
6
7 public class BlockingBufferTest
8 {
9 public static void main(String[] args)

10 {

Fig. 26.15 | Two threads manipulating a blocking buffer that properly implements the producer/
consumer relationship. (Part 1 of 2.)

Fig. 26.14 | Creating a synchronized buffer using an ArrayBlockingQueue. (Part 2 of 2.)

int readValue = buffer.take(); // remove value from buffer

1072 Chapter 26 Multithreading

While methods put and take of ArrayBlockingQueue are properly synchronized,
BlockingBuffer methods set and get (Fig. 26.14) are not declared to be synchronized.
Thus, the statements performed in method set—the put operation (line 17) and the
output (lines 18–19)—are not atomic; nor are the statements in method get—the take

operation (line 25) and the output (lines 26–27). So there’s no guarantee that each output
will occur immediately after the corresponding put or take operation, and the outputs
may appear out of order. Even if they do, the ArrayBlockingQueue object is properly syn-
chronizing access to the data, as evidenced by the fact that the sum of values read by the
consumer is always correct.

11 // create new thread pool with two threads
12 ExecutorService application = Executors.newCachedThreadPool();
13
14
15
16
17
18
19
20 application.shutdown();
21 } // end main
22 } // end class BlockingBufferTest

Producer writes 1 Buffer cells occupied: 1
Consumer reads 1 Buffer cells occupied: 0
Producer writes 2 Buffer cells occupied: 1
Consumer reads 2 Buffer cells occupied: 0
Producer writes 3 Buffer cells occupied: 1
Consumer reads 3 Buffer cells occupied: 0
Producer writes 4 Buffer cells occupied: 1
Consumer reads 4 Buffer cells occupied: 0
Producer writes 5 Buffer cells occupied: 1
Consumer reads 5 Buffer cells occupied: 0
Producer writes 6 Buffer cells occupied: 1
Consumer reads 6 Buffer cells occupied: 0
Producer writes 7 Buffer cells occupied: 1
Consumer reads 7 Buffer cells occupied: 0
Producer writes 8 Buffer cells occupied: 1
Consumer reads 8 Buffer cells occupied: 0
Producer writes 9 Buffer cells occupied: 1
Consumer reads 9 Buffer cells occupied: 0
Producer writes 10 Buffer cells occupied: 1

Producer done producing
Terminating Producer
Consumer reads 10 Buffer cells occupied: 0

Consumer read values totaling 55
Terminating Consumer

Fig. 26.15 | Two threads manipulating a blocking buffer that properly implements the producer/
consumer relationship. (Part 2 of 2.)

// create BlockingBuffer to store ints
Buffer sharedLocation = new BlockingBuffer();

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

26.7 Producer/Consumer Relationship with Synchronization 1073

26.7 Producer/Consumer Relationship with
Synchronization
The previous example showed how multiple threads can share a single-element buffer in a
thread-safe manner by using the ArrayBlockingQueue class that encapsulates the synchro-
nization necessary to protect the shared data. For educational purposes, we now explain
how you can implement a shared buffer yourself using the synchronized keyword and
methods of class Object. Using an ArrayBlockingQueue will result in more-maintainable
and better-performing code.

The first step in synchronizing access to the buffer is to implement methods get and
set as synchronized methods. This requires that a thread obtain the monitor lock on the
Buffer object before attempting to access the buffer data, but it does not automatically
ensure that threads proceed with an operation only if the buffer is in the proper state. We
need a way to allow our threads to wait, depending on whether certain conditions are true.
In the case of placing a new item in the buffer, the condition that allows the operation to
proceed is that the buffer is not full. In the case of fetching an item from the buffer, the
condition that allows the operation to proceed is that the buffer is not empty. If the condi-
tion in question is true, the operation may proceed; if it’s false, the thread must wait until
it becomes true. When a thread is waiting on a condition, it’s removed from contention
for the processor and placed into the waiting state and the lock it holds is released.

Methods wait, notify and notifyAll
Object methods wait, notify and notifyAll, which are inherited by all other classes, can
be used with conditions to make threads wait when they cannot perform their tasks. If a
thread obtains the monitor lock on an object, then determines that it cannot continue with
its task on that object until some condition is satisfied, the thread can call Object method
wait on the synchronized object; this releases the monitor lock on the object, and the
thread waits in the waiting state while the other threads try to enter the object’s synchro-
nized statement(s) or method(s). When a thread executing a synchronized statement (or
method) completes or satisfies the condition on which another thread may be waiting, it
can call Object method notify on the synchronized object to allow a waiting thread to
transition to the runnable state again. At this point, the thread that was transitioned from
the waiting state to the runnable state can attempt to reacquire the monitor lock on the
object. Even if the thread is able to reacquire the monitor lock, it still might not be able to
perform its task at this time—in which case the thread will reenter the waiting state and
implicitly release the monitor lock. If a thread calls notifyAll on the synchronized ob-
ject, then all the threads waiting for the monitor lock become eligible to reacquire the lock
(that is, they all transition to the runnable state).

Remember that only one thread at a time can obtain the monitor lock on the object—
other threads that attempt to acquire the same monitor lock will be blocked until the mon-
itor lock becomes available again (i.e., until no other thread is executing in a synchronized
statement on that object).

Common Programming Error 26.1
It’s an error if a thread issues a wait, a notify or a notifyAll on an object without hav-
ing acquired a lock for it. This causes an IllegalMonitorStateException.

1074 Chapter 26 Multithreading

The application in Fig. 26.16 and Fig. 26.17 demonstrates a Producer and a Con-

sumer accessing a shared buffer with synchronization. In this case, the Producer always
produces a value first, the Consumer correctly consumes only after the Producer produces
a value and the Producer correctly produces the next value only after the Consumer con-
sumes the previous (or first) value. We reuse interface Buffer and classes Producer and
Consumer from the example in Section 26.5, except that line 28 is removed from class Pro-
ducer and class Consumer. The synchronization is handled in the set and get methods of
class SynchronizedBuffer (Fig. 26.16), which implements interface Buffer (line 4).
Thus, the Producer’s and Consumer’s run methods simply call the shared object’s syn-

chronized set and get methods.

Error-Prevention Tip 26.2
It’s a good practice to use notifyAll to notify waiting threads to become runnable. Doing
so avoids the possibility that your program would forget about waiting threads, which
would otherwise starve.

1 // Fig. 26.16: SynchronizedBuffer.java
2 // Synchronizing access to shared data using Object
3 // methods wait and notifyAll.
4 public class SynchronizedBuffer implements Buffer
5 {
6 private int buffer = -1; // shared by producer and consumer threads
7 private boolean occupied = false; // whether the buffer is occupied
8
9 // place value into buffer

10
11 {
12 // while there are no empty locations, place thread in waiting state
13
14 {
15 // output thread information and buffer information, then wait
16 System.out.println("Producer tries to write.");
17 displayState("Buffer full. Producer waits.");
18
19 } // end while
20
21
22
23
24
25
26
27 displayState("Producer writes " + buffer);
28
29
30 } // end method set; releases lock on SynchronizedBuffer
31

Fig. 26.16 | Synchronizing access to shared data using Object methods wait and notifyAll.
(Part 1 of 2.)

public synchronized void set(int value) throws InterruptedException

while (occupied)

wait();

buffer = value; // set new buffer value

// indicate producer cannot store another value
// until consumer retrieves current buffer value
occupied = true;

notifyAll(); // tell waiting thread(s) to enter runnable state

26.7 Producer/Consumer Relationship with Synchronization 1075

Fields and Methods of Class SynchronizedBuffer
Class SynchronizedBuffer contains fields buffer (line 6) and occupied (line 7). Methods
set (lines 10–30) and get (lines 33–53) are declared as synchronized—only one thread
can call either of these methods at a time on a particular SynchronizedBuffer object. Field
occupied is used to determine whether it’s the Producer’s or the Consumer’s turn to per-
form a task. This field is used in conditional expressions in both the set and get methods.
If occupied is false, then buffer is empty, so the Consumer cannot read the value of buf-
fer, but the Producer can place a value into buffer. If occupied is true, the Consumer

can read a value from buffer, but the Producer cannot place a value into buffer.

Method set and the Producer Thread
When the Producer thread’s run method invokes synchronized method set, the thread
implicitly attempts to acquire the SynchronizedBuffer object’s monitor lock. If the mon-
itor lock is available, the Producer thread implicitly acquires the lock. Then the loop at lines
13–19 first determines whether occupied is true. If so, buffer is full, so line 16 outputs a
message indicating that the Producer thread is trying to write a value, and line 17 invokes
method displayState (lines 56–60) to output another message indicating that buffer is

32 // return value from buffer
33
34 {
35 // while no data to read, place thread in waiting state
36 while (!occupied)
37 {
38 // output thread information and buffer information, then wait
39 System.out.println("Consumer tries to read.");
40 displayState("Buffer empty. Consumer waits.");
41
42 } // end while
43
44
45
46
47
48 displayState("Consumer reads " + buffer);
49
50
51
52 return buffer;
53 } // end method get; releases lock on SynchronizedBuffer
54
55 // display current operation and buffer state
56 public void displayState(String operation)
57 {
58 System.out.printf("%-40s%d\t\t%b\n\n", operation, buffer,
59 occupied);
60 } // end method displayState
61 } // end class SynchronizedBuffer

Fig. 26.16 | Synchronizing access to shared data using Object methods wait and notifyAll.
(Part 2 of 2.)

public synchronized int get() throws InterruptedException

wait();

// indicate that producer can store another value
// because consumer just retrieved buffer value
occupied = false;

notifyAll(); // tell waiting thread(s) to enter runnable state

1076 Chapter 26 Multithreading

full and that the Producer thread is waiting until there’s space. Line 18 invokes method
wait (inherited from Object by SynchronizedBuffer) to place the thread that called meth-
od set (i.e., the Producer thread) in the waiting state for the SynchronizedBuffer object.
The call to wait causes the calling thread to implicitly release the lock on the Synchronized-
Buffer object. This is important because the thread cannot currently perform its task and
because other threads (in this case, the Consumer) should be allowed to access the object to
allow the condition (occupied) to change. Now another thread can attempt to acquire the
SynchronizedBuffer object’s lock and invoke the object’s set or get method.

The Producer thread remains in the waiting state until another thread notifies the
Producer that it may proceed—at which point the Producer returns to the runnable state
and attempts to implicitly reacquire the lock on the SynchronizedBuffer object. If the
lock is available, the Producer thread reacquires it, and method set continues executing
with the next statement after the wait call. Because wait is called in a loop, the loop-con-
tinuation condition is tested again to determine whether the thread can proceed. If not,
then wait is invoked again—otherwise, method set continues with the next statement
after the loop.

Line 21 in method set assigns the value to the buffer. Line 25 sets occupied to true

to indicate that the buffer now contains a value (i.e., a consumer can read the value, but
a Producer cannot yet put another value there). Line 27 invokes method displayState

to output a message indicating that the Producer is writing a new value into the buffer.
Line 29 invokes method notifyAll (inherited from Object). If any threads are waiting on
the SynchronizedBuffer object’s monitor lock, those threads enter the runnable state and
can now attempt to reacquire the lock. Method notifyAll returns immediately, and
method set then returns to the caller (i.e., the Producer’s run method). When method
set returns, it implicitly releases the monitor lock on the SynchronizedBuffer object.

Method get and the Consumer Thread
Methods get and set are implemented similarly. When the Consumer thread’s run meth-
od invokes synchronized method get, the thread attempts to acquire the monitor lock on
the SynchronizedBuffer object. If the lock is available, the Consumer thread acquires it.
Then the while loop at lines 36–42 determines whether occupied is false. If so, the buf-
fer is empty, so line 39 outputs a message indicating that the Consumer thread is trying to
read a value, and line 40 invokes method displayState to output a message indicating
that the buffer is empty and that the Consumer thread is waiting. Line 41 invokes method
wait to place the thread that called method get (i.e., the Consumer) in the waiting state
for the SynchronizedBuffer object. Again, the call to wait causes the calling thread to im-
plicitly release the lock on the SynchronizedBuffer object, so another thread can attempt
to acquire the SynchronizedBuffer object’s lock and invoke the object’s set or get meth-
od. If the lock on the SynchronizedBuffer is not available (e.g., if the Producer has not
yet returned from method set), the Consumer is blocked until the lock becomes available.

The Consumer thread remains in the waiting state until it’s notified by another thread
that it may proceed—at which point the Consumer thread returns to the runnable state and
attempts to implicitly reacquire the lock on the SynchronizedBuffer object. If the lock is
available, the Consumer reacquires it, and method get continues executing with the next
statement after wait. Because wait is called in a loop, the loop-continuation condition is
tested again to determine whether the thread can proceed with its execution. If not, wait
is invoked again—otherwise, method get continues with the next statement after the loop.

26.7 Producer/Consumer Relationship with Synchronization 1077

Line 46 sets occupied to false to indicate that buffer is now empty (i.e., a Consumer

cannot read the value, but a Producer can place another value in buffer), line 48 calls
method displayState to indicate that the consumer is reading and line 50 invokes
method notifyAll. If any threads are in the waiting state for the lock on this Synchro-
nizedBuffer object, they enter the runnable state and can now attempt to reacquire the
lock. Method notifyAll returns immediately, then method get returns the value of
buffer to its caller. When method get returns, the lock on the SynchronizedBuffer

object is implicitly released.

Testing Class SynchronizedBuffer
Class SharedBufferTest2 (Fig. 26.17) is similar to class SharedBufferTest (Fig. 26.13).
SharedBufferTest2 contains method main (lines 8–24), which launches the application.
Line 11 creates an ExecutorService to run the Producer and Consumer tasks. Line 14 cre-
ates a SynchronizedBuffer object and assigns its reference to Buffer variable shared-

Location. This object stores the data that will be shared between the Producer and
Consumer. Lines 16–17 display the column heads for the output. Lines 20–21 execute a
Producer and a Consumer. Finally, line 23 calls method shutdown to end the application
when the Producer and Consumer complete their tasks. When method main ends (line 24),
the main thread of execution terminates.

Error-Prevention Tip 26.3
Always invoke method wait in a loop that tests the condition the task is waiting on. It’s
possible that a thread will reenter the runnable state (via a timed wait or another thread
calling notifyAll) before the condition is satisfied. Testing the condition again ensures
that the thread will not erroneously execute if it was notified early.

1 // Fig. 26.17: SharedBufferTest2.java
2 // Two threads correctly manipulating a synchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5
6 public class SharedBufferTest2
7 {
8 public static void main(String[] args)
9 {

10 // create a newCachedThreadPool
11 ExecutorService application = Executors.newCachedThreadPool();
12
13
14
15
16 System.out.printf("%-40s%s\t\t%s\n%-40s%s\n\n", "Operation",
17 "Buffer", "Occupied", "---------", "------\t\t--------");
18
19 // execute the Producer and Consumer tasks
20
21
22

Fig. 26.17 | Two threads correctly manipulating a synchronized buffer. (Part 1 of 3.)

// create SynchronizedBuffer to store ints
Buffer sharedLocation = new SynchronizedBuffer();

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

1078 Chapter 26 Multithreading

23 application.shutdown();
24 } // end main
25 } // end class SharedBufferTest2

Operation Buffer Occupied
--------- ------ --------

Consumer tries to read.
-1 false

Producer writes 1 1 true

Consumer reads 1 1 false

Consumer tries to read.
1 false

Producer writes 2 2 true

Consumer reads 2 2 false

Producer writes 3 3 true

Consumer reads 3 3 false

Producer writes 4 4 true

Producer tries to write.
4 true

Consumer reads 4 4 false

Producer writes 5 5 true

Consumer reads 5 5 false

Producer writes 6 6 true

Producer tries to write.
6 true

Consumer reads 6 6 false

Producer writes 7 7 true

Producer tries to write.
7 true

Consumer reads 7 7 false

Producer writes 8 8 true

Consumer reads 8 8 false

Consumer tries to read.
8 false

Fig. 26.17 | Two threads correctly manipulating a synchronized buffer. (Part 2 of 3.)

Buffer empty. Consumer waits.

Buffer empty. Consumer waits.

Buffer full. Producer waits.

Buffer full. Producer waits.

Buffer full. Producer waits.

Buffer empty. Consumer waits.

26.8 Producer/Consumer Relationship: Bounded Buffers 1079

Study the outputs in Fig. 26.17. Observe that every integer produced is consumed exactly
once—no values are lost, and no values are consumed more than once. The synchronization
ensures that the Producer produces a value only when the buffer is empty and the Con-

sumer consumes only when the buffer is full. The Producer always goes first, the Consumer
waits if the Producer has not produced since the Consumer last consumed, and the Pro-

ducer waits if the Consumer has not yet consumed the value that the Producer most
recently produced. Execute this program several times to confirm that every integer pro-
duced is consumed exactly once. In the sample output, note the highlighted lines indi-
cating when the Producer and Consumer must wait to perform their respective tasks.

26.8 Producer/Consumer Relationship: Bounded Buffers
The program in Section 26.7 uses thread synchronization to guarantee that two threads
manipulate data in a shared buffer correctly. However, the application may not perform
optimally. If the two threads operate at different speeds, one them will spend more (or
most) of its time waiting. For example, in the program in Section 26.7 we shared a single
integer variable between the two threads. If the Producer thread produces values faster
than the Consumer can consume them, then the Producer thread waits for the Consumer,
because there are no other locations in the buffer in which to place the next value. Simi-
larly, if the Consumer consumes values faster than the Producer produces them, the Con-

sumer waits until the Producer places the next value in the shared buffer. Even when we
have threads that operate at the same relative speeds, those threads may occasionally be-
come “out of sync” over a period of time, causing one of them to wait for the other. We
cannot make assumptions about the relative speeds of concurrent threads—interactions that
occur with the operating system, the network, the user and other components can cause
the threads to operate at different and ever-changing speeds. When this happens, threads
wait. When threads wait excessively, programs become less efficient, interactive programs
become less responsive and applications suffer longer delays.

Producer writes 9 9 true

Consumer reads 9 9 false

Consumer tries to read.
9 false

Producer writes 10 10 true

Consumer reads 10 10 false

Producer done producing
Terminating Producer

Consumer read values totaling 55
Terminating Consumer

Fig. 26.17 | Two threads correctly manipulating a synchronized buffer. (Part 3 of 3.)

Buffer empty. Consumer waits.

1080 Chapter 26 Multithreading

Bounded Buffers
To minimize the amount of waiting time for threads that share resources and operate at
the same average speeds, we can implement a bounded buffer that provides a fixed number
of buffer cells into which the Producer can place values, and from which the Consumer can
retrieve those values. (In fact, we’ve already done this with the ArrayBlockingQueue class
in Section 26.6.) If the Producer temporarily produces values faster than the Consumer can
consume them, the Producer can write additional values into the extra buffer cells, if any
are available. This capability enables the Producer to perform its task even though the
Consumer is not ready to retrieve the current value being produced. Similarly, if the Con-

sumer consumes faster than the Producer produces new values, the Consumer can read ad-
ditional values (if there are any) from the buffer. This enables the Consumer to keep busy
even though the Producer is not ready to produce additional values.

Even a bounded buffer is inappropriate if the Producer and the Consumer operate con-
sistently at different speeds. If the Consumer always executes faster than the Producer, then
a buffer containing one location is enough. Additional locations would simply waste
memory. If the Producer always executes faster, only a buffer with an “infinite” number
of locations would be able to absorb the extra production. However, if the Producer and
Consumer execute at about the same average speed, a bounded buffer helps to smooth the
effects of any occasional speeding up or slowing down in either thread’s execution.

The key to using a bounded buffer with a Producer and Consumer that operate at about
the same speed is to provide the buffer with enough locations to handle the anticipated
“extra” production. If, over a period of time, we determine that the Producer often pro-
duces as many as three more values than the Consumer can consume, we can provide a
buffer of at least three cells to handle the extra production. Making the buffer too small
would cause threads to wait longer; making the buffer too large would waste memory.

Bounded Buffers Using ArrayBlockingQueue
The simplest way to implement a bounded buffer is to use an ArrayBlockingQueue for the
buffer so that all of the synchronization details are handled for you. This can be done by mod-
ifying the example from Section 26.6 to pass the desired size for the bounded buffer into the
ArrayBlockingQueue constructor. Rather than repeat our previous ArrayBlockingQueue

example with a different size, we instead present an example that illustrates how you can
build a bounded buffer yourself. Again, using an ArrayBlockingQueue will result in more-
maintainable and better-performing code. In Exercise 26.11, we ask you to reimplement this
section’s example, using the Java Concurrency API techniques presented in Section 26.9.

Implementing Your Own Bounded Buffer as a Circular Buffer
The program in Fig. 26.18 and Fig. 26.19 demonstrates a Producer and a Consumer ac-
cessing a bounded buffer with synchronization. Again, we reuse interface Buffer and classes

Performance Tip 26.3
Even when using a bounded buffer, it’s possible that a producer thread could fill the buf-
fer, which would force the producer to wait until a consumer consumed a value to free an
element in the buffer. Similarly, if the buffer is empty at any given time, a consumer
thread must wait until the producer produces another value. The key to using a bounded
buffer is to optimize the buffer size to minimize the amount of thread wait time, while
not wasting space.

26.8 Producer/Consumer Relationship: Bounded Buffers 1081

Producer and Consumer from the example in Section 26.5, except that line 28 is removed
from class Producer and class Consumer. We implement the bounded buffer in class Cir-
cularBuffer (Fig. 26.18) as a circular buffer that uses a shared array of three elements. A
circular buffer writes into and reads from the array elements in order, beginning at the first
cell and moving toward the last. When a Producer or Consumer reaches the last element,
it returns to the first and begins writing or reading, respectively, from there. In this version
of the producer/consumer relationship, the Consumer consumes a value only when the ar-
ray is not empty and the Producer produces a value only when the array is not full. The
statements that created and started the thread objects in the main method of class
SharedBufferTest2 (Fig. 26.17) now appear in class CircularBufferTest (Fig. 26.19).

1 // Fig. 26.18: CircularBuffer.java
2 // Synchronizing access to a shared three-element bounded buffer.
3 public class CircularBuffer implements Buffer
4 {
5 private final int[] buffer = { -1, -1, -1 }; // shared buffer
6
7 private int occupiedCells = 0; // count number of buffers used
8 private int writeIndex = 0; // index of next element to write to
9 private int readIndex = 0; // index of next element to read

10
11 // place value into buffer
12 public synchronized void set(int value) throws InterruptedException
13 {
14 // wait until buffer has space available, then write value;
15
16
17
18
19
20
21
22 buffer[writeIndex] = value; // set new buffer value
23
24 // update circular write index
25
26
27 ++occupiedCells; // one more buffer cell is full
28 displayState("Producer writes " + value);
29 notifyAll(); // notify threads waiting to read from buffer
30 } // end method set
31
32 // return value from buffer
33 public synchronized int get() throws InterruptedException
34 {
35 // wait until buffer has data, then read value;
36 // while no data to read, place thread in waiting state
37 while (occupiedCells == 0)
38 {
39 System.out.printf("Buffer is empty. Consumer waits.\n");

Fig. 26.18 | Synchronizing access to a shared three-element bounded buffer. (Part 1 of 2.)

// while no empty locations, place thread in blocked state
while (occupiedCells == buffer.length)
{

System.out.printf("Buffer is full. Producer waits.\n");
wait(); // wait until a buffer cell is free

} // end while

writeIndex = (writeIndex + 1) % buffer.length;

1082 Chapter 26 Multithreading

Line 5 initializes array buffer as a three-element int array that represents the circular
buffer. Variable occupiedCells (line 7) counts the number of elements in buffer that
contain data to be read. When occupiedBuffers is 0, there’s no data in the circular buffer
and the Consumer must wait—when occupiedCells is 3 (the size of the circular buffer),

40 wait(); // wait until a buffer cell is filled
41 } // end while
42
43 int readValue = buffer[readIndex]; // read value from buffer
44
45 // update circular read index
46
47
48 --occupiedCells; // one fewer buffer cells are occupied
49 displayState("Consumer reads " + readValue);
50 notifyAll(); // notify threads waiting to write to buffer
51
52 return readValue;
53 } // end method get
54
55 // display current operation and buffer state
56 public void displayState(String operation)
57 {
58 // output operation and number of occupied buffer cells
59 System.out.printf("%s%s%d)\n%s", operation,
60 " (buffer cells occupied: ", occupiedCells, "buffer cells: ");
61
62 for (int value : buffer)
63 System.out.printf(" %2d ", value); // output values in buffer
64
65 System.out.print("\n ");
66
67 for (int i = 0; i < buffer.length; i++)
68 System.out.print("---- ");
69
70 System.out.print("\n ");
71
72 for (int i = 0; i < buffer.length; i++)
73 {
74 if (i == writeIndex && i == readIndex)
75 System.out.print(" WR"); // both write and read index
76 else if (i == writeIndex)
77 System.out.print(" W "); // just write index
78 else if (i == readIndex)
79 System.out.print(" R "); // just read index
80 else
81 System.out.print(" "); // neither index
82 } // end for
83
84 System.out.println("\n");
85 } // end method displayState
86 } // end class CircularBuffer

Fig. 26.18 | Synchronizing access to a shared three-element bounded buffer. (Part 2 of 2.)

readIndex = (readIndex + 1) % buffer.length;

26.8 Producer/Consumer Relationship: Bounded Buffers 1083

the circular buffer is full and the Producer must wait. Variable writeIndex (line 8) indi-
cates the next location in which a value can be placed by a Producer. Variable readIndex

(line 9) indicates the position from which the next value can be read by a Consumer.

CircularBuffer Method set
CircularBuffer method set (lines 12–30) performs the same tasks as in Fig. 26.16, with
a few modifications. The loop at lines 16–20 determines whether the Producer must wait
(i.e., all buffer cells are full). If so, line 18 indicates that the Producer is waiting to perform
its task. Then line 19 invokes method wait, causing the Producer thread to release the
CircularBuffer’s lock and wait until there’s space for a new value to be written into the
buffer. When execution continues at line 22 after the while loop, the value written by the
Producer is placed in the circular buffer at location writeIndex. Then line 25 updates
writeIndex for the next call to CircularBuffer method set. This line is the key to the
buffer’s circularity. When writeIndex is incremented past the end of the buffer, the line
sets it to 0. Line 27 increments occupiedCells, because there’s now one more value in the
buffer that the Consumer can read. Next, line 28 invokes method displayState (lines 56–
85) to update the output with the value produced, the number of occupied buffer cells,
the contents of the buffer cells and the current writeIndex and readIndex. Line 29 in-
vokes method notifyAll to transition waiting threads to the runnable state, so that a wait-
ing Consumer thread (if there is one) can now try again to read a value from the buffer.

CircularBuffer Method get
CircularBuffer method get (lines 33–53) also performs the same tasks as it did in
Fig. 26.16, with a few minor modifications. The loop at lines 37–41 determines whether
the Consumer must wait (i.e., all buffer cells are empty). If the Consumer must wait, line 39
updates the output to indicate that the Consumer is waiting to perform its task. Then line
40 invokes method wait, causing the current thread to release the lock on the Circular-

Buffer and wait until data is available to read. When execution eventually continues at
line 43 after a notifyAll call from the Producer, readValue is assigned the value at loca-
tion readIndex in the circular buffer. Then line 46 updates readIndex for the next call to
CircularBuffer method get. This line and line 25 implement the circularity of the buffer.
Line 48 decrements occupiedCells, because there’s now one more position in the buffer
in which the Producer thread can place a value. Line 49 invokes method displayState

to update the output with the consumed value, the number of occupied buffer cells, the
contents of the buffer cells and the current writeIndex and readIndex. Line 50 invokes
method notifyAll to allow any Producer threads waiting to write into the CircularBuf-
fer object to attempt to write again. Then line 52 returns the consumed value to the caller.

CircularBuffer Method displayState
Method displayState (lines 56–85) outputs the application’s state. Lines 62–63 output
the values of the buffer cells. Line 63 uses method printf with a "%2d" format specifier
to print the contents of each buffer with a leading space if it’s a single digit. Lines 70–82
output the current writeIndex and readIndex with the letters W and R, respectively.

Testing Class CircularBuffer
Class CircularBufferTest (Fig. 26.19) contains the main method that launches the ap-
plication. Line 11 creates the ExecutorService, and line 14 creates a CircularBuffer ob-

1084 Chapter 26 Multithreading

ject and assigns its reference to CircularBuffer variable sharedLocation. Line 17
invokes the CircularBuffer’s displayState method to show the initial state of the buf-
fer. Lines 20–21 execute the Producer and Consumer tasks. Line 23 calls method shutdown

to end the application when the threads complete the Producer and Consumer tasks.
Each time the Producer writes a value or the Consumer reads a value, the program out-

puts a message indicating the action performed (a read or a write), the contents of buffer,
and the location of writeIndex and readIndex. In the output of Fig. 26.19, the Producer
first writes the value 1. The buffer then contains the value 1 in the first cell and the value
–1 (the default value that we use for output purposes) in the other two cells. The write
index is updated to the second cell, while the read index stays at the first cell. Next, the
Consumer reads 1. The buffer contains the same values, but the read index has been
updated to the second cell. The Consumer then tries to read again, but the buffer is empty
and the Consumer is forced to wait. Only once in this execution of the program was it nec-
essary for either thread to wait.

1 // Fig. 26.19: CircularBufferTest.java
2 // Producer and Consumer threads manipulating a circular buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5
6 public class CircularBufferTest
7 {
8 public static void main(String[] args)
9 {

10 // create new thread pool with two threads
11 ExecutorService application = Executors.newCachedThreadPool();
12
13
14
15
16 // display the initial state of the CircularBuffer
17 sharedLocation.displayState("Initial State");
18
19 // execute the Producer and Consumer tasks
20
21
22
23 application.shutdown();
24 } // end main
25 } // end class CircularBufferTest

Initial State (buffer cells occupied: 0)
buffer cells: -1 -1 -1

---- ---- ----
WR

Producer writes 1 (buffer cells occupied: 1)
buffer cells: 1 -1 -1

---- ---- ----
R W

Fig. 26.19 | Producer and Consumer threads manipulating a circular buffer. (Part 1 of 3.)

// create CircularBuffer to store ints
CircularBuffer sharedLocation = new CircularBuffer();

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

26.8 Producer/Consumer Relationship: Bounded Buffers 1085

Consumer reads 1 (buffer cells occupied: 0)
buffer cells: 1 -1 -1

---- ---- ----
WR

Producer writes 2 (buffer cells occupied: 1)
buffer cells: 1 2 -1

---- ---- ----
R W

Consumer reads 2 (buffer cells occupied: 0)
buffer cells: 1 2 -1

---- ---- ----
WR

Producer writes 3 (buffer cells occupied: 1)
buffer cells: 1 2 3

---- ---- ----
W R

Consumer reads 3 (buffer cells occupied: 0)
buffer cells: 1 2 3

---- ---- ----
WR

Producer writes 4 (buffer cells occupied: 1)
buffer cells: 4 2 3

---- ---- ----
R W

Producer writes 5 (buffer cells occupied: 2)
buffer cells: 4 5 3

---- ---- ----
R W

Consumer reads 4 (buffer cells occupied: 1)
buffer cells: 4 5 3

---- ---- ----
R W

Producer writes 6 (buffer cells occupied: 2)
buffer cells: 4 5 6

---- ---- ----
W R

Producer writes 7 (buffer cells occupied: 3)
buffer cells: 7 5 6

---- ---- ----
WR

Consumer reads 5 (buffer cells occupied: 2)
buffer cells: 7 5 6

---- ---- ----
W R

Producer writes 8 (buffer cells occupied: 3)
buffer cells: 7 8 6

---- ---- ----
WR

Fig. 26.19 | Producer and Consumer threads manipulating a circular buffer. (Part 2 of 3.)

Buffer is empty. Consumer waits.

1086 Chapter 26 Multithreading

26.9 Producer/Consumer Relationship: The Lock and
Condition Interfaces
Though the synchronized keyword provides for most basic thread-synchronization
needs, Java provides other tools to assist in developing concurrent programs. In this sec-
tion, we discuss the Lock and Condition interfaces. These interfaces give you more precise
control over thread synchronization, but are more complicated to use.

Interface Lock and Class ReentrantLock
Any object can contain a reference to an object that implements the Lock interface (of
package java.util.concurrent.locks). A thread calls the Lock’s lock method (analo-
gous to entering a synchronized block) to acquire the lock. Once a Lock has been ob-
tained by one thread, the Lock object will not allow another thread to obtain the Lock until
the first thread releases the Lock (by calling the Lock’s unlock method—analogous to ex-

Consumer reads 6 (buffer cells occupied: 2)
buffer cells: 7 8 6

---- ---- ----
R W

Consumer reads 7 (buffer cells occupied: 1)
buffer cells: 7 8 6

---- ---- ----
R W

Producer writes 9 (buffer cells occupied: 2)
buffer cells: 7 8 9

---- ---- ----
W R

Consumer reads 8 (buffer cells occupied: 1)
buffer cells: 7 8 9

---- ---- ----
W R

Consumer reads 9 (buffer cells occupied: 0)
buffer cells: 7 8 9

---- ---- ----
WR

Producer writes 10 (buffer cells occupied: 1)
buffer cells: 10 8 9

---- ---- ----
R W

Producer done producing
Terminating Producer
Consumer reads 10 (buffer cells occupied: 0)
buffer cells: 10 8 9

---- ---- ----
WR

Consumer read values totaling: 55
Terminating Consumer

Fig. 26.19 | Producer and Consumer threads manipulating a circular buffer. (Part 3 of 3.)

26.9 The Lock and Condition Interfaces 1087

iting a synchronized block). If several threads are trying to call method lock on the same
Lock object at the same time, only one of these threads can obtain the lock—all the others
are placed in the waiting state for that lock. When a thread calls method unlock, the lock
on the object is released and a waiting thread attempting to lock the object proceeds.

Class ReentrantLock (of package java.util.concurrent.locks) is a basic imple-
mentation of the Lock interface. The constructor for a ReentrantLock takes a boolean

argument that specifies whether the lock has a fairness policy. If the argument is true, the
ReentrantLock’s fairness policy is “the longest-waiting thread will acquire the lock when
it’s available.” Such a fairness policy guarantees that indefinite postponement (also called
starvation) cannot occur. If the fairness policy argument is set to false, there’s no guar-
antee as to which waiting thread will acquire the lock when it’s available.

Condition Objects and Interface Condition
If a thread that owns a Lock determines that it cannot continue with its task until some
condition is satisfied, the thread can wait on a condition object. Using Lock objects allows
you to explicitly declare the condition objects on which a thread may need to wait. For
example, in the producer/consumer relationship, producers can wait on one object and
consumers can wait on another. This is not possible when using the synchronized key-
words and an object’s built-in monitor lock. Condition objects are associated with a spe-
cific Lock and are created by calling a Lock’s newCondition method, which returns an
object that implements the Condition interface (of package java.util.concur-

rent.locks). To wait on a condition object, the thread can call the Condition’s await

method (analogous to Object method wait). This immediately releases the associated
Lock and places the thread in the waiting state for that Condition. Other threads can then
try to obtain the Lock. When a runnable thread completes a task and determines that the
waiting thread can now continue, the runnable thread can call Condition method signal

(analogous to Object method notify) to allow a thread in that Condition’s waiting state
to return to the runnable state. At this point, the thread that transitioned from the waiting
state to the runnable state can attempt to reacquire the Lock. Even if it’s able to reacquire
the Lock, the thread still might not be able to perform its task at this time—in which case
the thread can call the Condition’s await method to release the Lock and reenter the wait-
ing state. If multiple threads are in a Condition’s waiting state when signal is called, the
default implementation of Condition signals the longest-waiting thread to transition to
the runnable state. If a thread calls Condition method signalAll (analogous to Object

method notifyALl), then all the threads waiting for that condition transition to the run-
nable state and become eligible to reacquire the Lock. Only one of those threads can obtain
the Lock on the object—the others will wait until the Lock becomes available again. If the
Lock has a fairness policy, the longest-waiting thread acquires the Lock. When a thread is
finished with a shared object, it must call method unlock to release the Lock.

Software Engineering Observation 26.3
Using a ReentrantLock with a fairness policy avoids indefinite postponement.

Performance Tip 26.4
Using a ReentrantLock with a fairness policy can decrease program performance.

1088 Chapter 26 Multithreading

Lock and Condition vs. the synchronized Keyword
In some applications, using Lock and Condition objects may be preferable to using the syn-
chronized keyword. Locks allow you to interrupt waiting threads or to specify a timeout for
waiting to acquire a lock, which is not possible using the synchronized keyword. Also, a
Lock is not constrained to be acquired and released in the same block of code, which is the
case with the synchronized keyword. Condition objects allow you to specify multiple con-
ditions on which threads may wait. Thus, it’s possible to indicate to waiting threads that a
specific condition object is now true by calling signal or signallAll on that Condition ob-
ject. With synchronized, there’s no way to explicitly state the condition on which threads
are waiting, and thus there’s no way to notify threads waiting on one condition that they may
proceed without also signaling threads waiting on any other conditions. There are other pos-
sible advantages to using Lock and Condition objects, but generally it’s best to use the syn-
chronized keyword unless your application requires advanced synchronization capabilities.

Using Locks and Conditions to Implement Synchronization
To illustrate how to use the Lock and Condition interfaces, we now implement the pro-
ducer/consumer relationship using Lock and Condition objects to coordinate access to a
shared single-element buffer (Fig. 26.20 and Fig. 26.21). In this case, each produced value
is correctly consumed exactly once. Again, we reuse interface Buffer and classes Producer
and Consumer from the example in Section 26.5, except that line 28 is removed from class
Producer and class Consumer.

Common Programming Error 26.2
Deadlock occurs when a waiting thread (let’s call this thread1) cannot proceed because
it’s waiting (either directly or indirectly) for another thread (let’s call this thread2) to pro-
ceed, while simultaneously thread2 cannot proceed because it’s waiting (either directly or
indirectly) for thread1 to proceed. The two threads are waiting for each other, so the ac-
tions that would enable each thread to continue execution can never occur.

Error-Prevention Tip 26.4
When multiple threads manipulate a shared object using locks, ensure that if one thread
calls method await to enter the waiting state for a condition object, a separate thread
eventually will call Condition method signal to transition the thread waiting on the
condition object back to the runnable state. If multiple threads may be waiting on the
condition object, a separate thread can call Condition method signalAll as a safeguard
to ensure that all the waiting threads have another opportunity to perform their tasks. If
this is not done, starvation might occur.

Common Programming Error 26.3
An IllegalMonitorStateException occurs if a thread issues an await, a signal, or a
signalAll on a Condition object that was created from a ReentrantLock without hav-
ing acquired the lock for that Condition object.

Error-Prevention Tip 26.5
Using interfaces Lock and Condition is error prone—unlock is not guaranteed to be
called, whereas the monitor in a synchronized statement will always be released when
the statement completes execution.

26.9 The Lock and Condition Interfaces 1089

Class SynchronizedBuffer (Fig. 26.20) contains five fields. Line 11 creates a new
object of type ReentrantLock and assigns its reference to Lock variable accessLock. The
ReentrantLock is created without the fairness policy because at any time only a single Pro-
ducer or Consumer will be waiting to acquire the Lock in this example. Lines 14–15 create
two Conditions using Lock method newCondition. Condition canWrite contains a queue
for a Producer thread waiting while the buffer is full (i.e., there’s data in the buffer that
the Consumer has not read yet). If the buffer is full, the Producer calls method await on
this Condition. When the Consumer reads data from a full buffer, it calls method signal

on this Condition. Condition canRead contains a queue for a Consumer thread waiting
while the buffer is empty (i.e., there’s no data in the buffer for the Consumer to read). If
the buffer is empty, the Consumer calls method await on this Condition. When the Pro-

ducer writes to the empty buffer, it calls method signal on this Condition. The int vari-
able buffer (line 17) holds the shared data. The boolean variable occupied (line 18) keeps
track of whether the buffer currently holds data (that the Consumer should read).

1 // Fig. 26.20: SynchronizedBuffer.java
2 // Synchronizing access to a shared integer using the Lock and Condition
3 // interfaces
4 import java.util.concurrent.locks.Lock;
5 import java.util.concurrent.locks.ReentrantLock;
6 import java.util.concurrent.locks.Condition;
7
8 public class SynchronizedBuffer implements Buffer
9 {

10
11
12
13
14
15
16
17
18 private boolean occupied = false; // whether buffer is occupied
19
20 // place int value into buffer
21 public void set(int value) throws InterruptedException
22 {
23
24
25 // output thread information and buffer information, then wait
26 try
27 {
28 // while buffer is not empty, place thread in waiting state
29 while (occupied)
30 {
31 System.out.println("Producer tries to write.");
32 displayState("Buffer full. Producer waits.");
33
34 } // end while

Fig. 26.20 | Synchronizing access to a shared integer using the Lock and Condition
interfaces. (Part 1 of 3.)

// Lock to control synchronization with this buffer
private final Lock accessLock = new ReentrantLock();

// conditions to control reading and writing
private final Condition canWrite = accessLock.newCondition();
private final Condition canRead = accessLock.newCondition();

private int buffer = -1; // shared by producer and consumer threads

accessLock.lock(); // lock this object

canWrite.await(); // wait until buffer is empty

1090 Chapter 26 Multithreading

35
36 buffer = value; // set new buffer value
37
38 // indicate producer cannot store another value
39 // until consumer retrieves current buffer value
40 occupied = true;
41
42 displayState("Producer writes " + buffer);
43
44
45
46 } // end try
47 finally
48 {
49
50 } // end finally
51 } // end method set
52
53 // return value from buffer
54 public int get() throws InterruptedException
55 {
56 int readValue = 0; // initialize value read from buffer
57
58
59 // output thread information and buffer information, then wait
60 try
61 {
62 // if there is no data to read, place thread in waiting state
63 while (!occupied)
64 {
65 System.out.println("Consumer tries to read.");
66 displayState("Buffer empty. Consumer waits.");
67
68 } // end while
69
70 // indicate that producer can store another value
71 // because consumer just retrieved buffer value
72 occupied = false;
73
74 readValue = buffer; // retrieve value from buffer
75 displayState("Consumer reads " + readValue);
76
77
78
79 } // end try
80 finally
81 {
82
83 } // end finally
84
85 return readValue;
86 } // end method get

Fig. 26.20 | Synchronizing access to a shared integer using the Lock and Condition
interfaces. (Part 2 of 3.)

// signal any threads waiting to read from buffer
canRead.signalAll();

accessLock.unlock(); // unlock this object

accessLock.lock(); // lock this object

canRead.await(); // wait until buffer is full

// signal any threads waiting for buffer to be empty
canWrite.signalAll();

accessLock.unlock(); // unlock this object

26.9 The Lock and Condition Interfaces 1091

Line 23 in method set calls method lock on the SynchronizedBuffer’s accessLock.
If the lock is available (i.e., no other thread has acquired it), this thread now owns the lock
and the thread continues. If the lock is unavailable (i.e., it’s held by another thread),
method lock waits until the lock is released. After the lock is acquired, lines 26–46 execute.
Line 29 tests occupied to determine whether buffer is full. If it is, lines 31–32 display a
message indicating that the thread will wait. Line 33 calls Condition method await on the
canWrite condition object, which temporarily releases the SynchronizedBuffer’s Lock

and waits for a signal from the Consumer that buffer is available for writing. When buffer

is available, the method proceeds, writing to buffer (line 36), setting occupied to true

(line 40) and displaying a message indicating that the producer wrote a value (line 42). Line
45 calls Condition method signal on condition object canRead to notify the waiting Con-

sumer (if there is one) that the buffer has new data to be read. Line 49 calls method unlock

from a finally block to release the lock and allow the Consumer to proceed.

Line 57 of method get (lines 54–86) calls method lock to acquire the Lock. This
method waits until the Lock is available. Once the Lock is acquired, line 63 tests whether
occupied is false, indicating that the buffer is empty. If so, line 67 calls method await on
condition object canRead. Recall that method signal is called on variable canRead in the
set method (line 45). When the Condition object is signaled, the get method continues.
Line 72–74 set occupied to false, store the value of buffer in readValue and output the
readValue. Then line 78 signals the condition object canWrite. This awakens the Pro-

ducer if it’s indeed waiting for the buffer to be emptied. Line 82 calls method unlock from
a finally block to release the lock, and line 85 returns readValue to the caller.

Class SharedBufferTest2 (Fig. 26.21) is identical to that of Fig. 26.17. Study the
outputs in Fig. 26.21. Observe that every integer produced is consumed exactly once—no
values are lost, and no values are consumed more than once. The Lock and Condition objects
ensure that the Producer and Consumer cannot perform their tasks unless it’s their turn.

87
88 // display current operation and buffer state
89 public void displayState(String operation)
90 {
91 System.out.printf("%-40s%d\t\t%b\n\n", operation, buffer,
92 occupied);
93 } // end method displayState
94 } // end class SynchronizedBuffer

Error-Prevention Tip 26.6
Place calls to Lock method unlock in a finally block. If an exception is thrown, unlock
must still be called or deadlock could occur.

Common Programming Error 26.4
Forgetting to signal a waiting thread is a logic error. The thread will remain in the wait-
ing state, which will prevent it from proceeding. Such waiting can lead to indefinite post-
ponement or deadlock.

Fig. 26.20 | Synchronizing access to a shared integer using the Lock and Condition
interfaces. (Part 3 of 3.)

1092 Chapter 26 Multithreading

The Producer must go first, the Consumer must wait if the Producer has not produced
since the Consumer last consumed and the Producer must wait if the Consumer has not yet
consumed the value that the Producer most recently produced. Execute this program sev-
eral times to confirm that every integer produced is consumed exactly once. In the sample
output, note the highlighted lines indicating when the Producer and Consumer must wait
to perform their respective tasks.

1 // Fig. 26.21: SharedBufferTest2.java
2 // Two threads manipulating a synchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5
6 public class SharedBufferTest2
7 {
8 public static void main(String[] args)
9 {

10 // create new thread pool with two threads
11 ExecutorService application = Executors.newCachedThreadPool();
12
13 // create SynchronizedBuffer to store ints
14 Buffer sharedLocation = new SynchronizedBuffer();
15
16 System.out.printf("%-40s%s\t\t%s\n%-40s%s\n\n", "Operation",
17 "Buffer", "Occupied", "---------", "------\t\t--------");
18
19 // execute the Producer and Consumer tasks
20 application.execute(new Producer(sharedLocation));
21 application.execute(new Consumer(sharedLocation));
22
23 application.shutdown();
24 } // end main
25 } // end class SharedBufferTest2

Operation Buffer Occupied
--------- ------ --------

Producer writes 1 1 true

Consumer reads 1 1 false

Producer writes 2 2 true

Consumer reads 2 2 false

Producer writes 3 3 true

Consumer reads 3 3 false

Fig. 26.21 | Two threads manipulating a synchronized buffer. (Part 1 of 2.)

Producer tries to write.
Buffer full. Producer waits. 1 true

Producer tries to write.
Buffer full. Producer waits. 2 true

26.10 Concurrent Collections Overview 1093

26.10 Concurrent Collections Overview
In Chapter 20, we introduced various collections from the Java Collections API. We also
mentioned that you can obtain synchronized versions of those collections to allow only
one thread at a time to access a collection that might be shared among several threads. The
collections from the java.util.concurrent package are specifically designed and opti-
mized for use in programs that share collections among multiple threads.

Figure 26.22 lists the many concurrent collections in package java.util.concur-

rent. For more information on these collections, visit

Producer writes 4 4 true

Consumer reads 4 4 false

Producer writes 5 5 true

Consumer reads 5 5 false

Producer writes 6 6 true

Consumer reads 6 6 false

Producer writes 7 7 true

Consumer reads 7 7 false

Producer writes 8 8 true

Consumer reads 8 8 false

Producer writes 9 9 true

Consumer reads 9 9 false

Producer writes 10 10 true

Producer done producing
Terminating Producer
Consumer reads 10 10 false

Consumer read values totaling 55
Terminating Consumer

download.oracle.com/javase/6/docs/api/java/util/concurrent/
package-summary.html

Fig. 26.21 | Two threads manipulating a synchronized buffer. (Part 2 of 2.)

Consumer tries to read.
Buffer empty. Consumer waits. 4 false

Consumer tries to read.
Buffer empty. Consumer waits. 5 false

1094 Chapter 26 Multithreading

For information on the additional concurrent collections that are new in Java SE 7, visit

download.java.net/jdk7/docs/api/java/util/concurrent/
package-summary.html

Collection Description

ArrayBlockingQueue A fixed-size queue that supports the producer/consumer
relationship—possibly with many producers and consumers.

ConcurrentHashMap A hash-based map that allows an arbitrary number of reader
threads and a limited number of writer threads.

ConcurrentLinkedQueue A concurrent linked-list implementation of a queue that can
grow dynamically.

ConcurrentSkipListMap A concurrent map that is sorted by its keys.

ConcurrentSkipListSet A sorted concurrent set.

CopyOnWriteArrayList A thread-safe ArrayList. Each operation that modifies the
collection first creates a new copy of the contents. Used
when the collection is traversed much more frequently than
the collection’s contents are modified.

CopyOnWriteArraySet A set that’s implemented using CopyOnWriteArrayList.

DelayQueue A variable-size queue containing Delayed objects. An object
can be removed only after its delay has expired.

LinkedBlockingDeque A double-ended blocking queue implemented as a linked list
that can optionally be fixed in size.

LinkedBlockingQueue A blocking queue implemented as a linked list that can
optionally be fixed in size.

PriorityBlockingQueue A variable-length priority-based blocking queue (like a
PriorityQueue).

SynchronousQueue A blocking queue implementation that does not have an
internal capacity. Each insert operation by one thread must
wait for a remove operation from another thread and vice
versa.

Concurrent Collections Added in Java SE 7
ConcurrentLinkedDeque A concurrent linked-list implementation of a double-ended

queue.

LinkedTransferQueue A linked-list implementation of interface TransferQueue.
Each producer has the option of waiting for a consumer to
take an element being inserted (via method transfer) or
simply placing the element into the queue (via method put).
Also provides overloaded method tryTransfer to immedi-
ately transfer an element to a waiting consumer or to do so
within a specified timeout period. If the transfer cannot be
completed, the element is not placed in the queue. Typically
used in applications that pass messages between threads.

Fig. 26.22 | Concurrent collections summary (package java.util.concurrent).

26.11 Multithreading with GUI 1095

26.11 Multithreading with GUI
Swing applications present a unique set of challenges for multithreaded programming. All
Swing applications have a single thread, called the event dispatch thread, to handle inter-
actions with the application’s GUI components. Typical interactions include updating
GUI components or processing user actions such as mouse clicks. All tasks that require inter-
action with an application’s GUI are placed in an event queue and are executed sequentially
by the event dispatch thread.

Swing GUI components are not thread safe—they cannot be manipulated by multiple
threads without the risk of incorrect results. Unlike the other examples presented in this
chapter, thread safety in GUI applications is achieved not by synchronizing thread actions,
but by ensuring that Swing components are accessed from only a single thread—the event dis-
patch thread. This technique is called thread confinement. Allowing just one thread to
access non-thread-safe objects eliminates the possibility of corruption due to multiple
threads accessing these objects concurrently.

Usually it’s sufficient to perform simple calculations on the event dispatch thread in
sequence with GUI component manipulations. If an application must perform a lengthy
computation in response to a user interface interaction, the event dispatch thread cannot
attend to other tasks in the event queue while the thread is tied up in that computation.
This causes the GUI components to become unresponsive. It’s preferable to handle a long-
running computation in a separate thread, freeing the event dispatch thread to continue
managing other GUI interactions. Of course, to update the GUI based on the computa-
tion’s results, you must update the GUI from the event dispatch thread, rather than from
the worker thread that performed the computation.

Class SwingWorker
Class SwingWorker (in package javax.swing) perform long-running computations in a
worker thread and to update Swing components from the event dispatch thread based on
the computations’ results. SwingWorker implements the Runnable interface, meaning that
a SwingWorker object can be scheduled to execute in a separate thread. The SwingWorker class
provides several methods to simplify performing computations in a worker thread and
making the results available for display in a GUI. Some common SwingWorker methods
are described in Fig. 26.23.

Method Description

doInBackground Defines a long computation and is called in a worker thread.

done Executes on the event dispatch thread when doInBackground returns.

execute Schedules the SwingWorker object to be executed in a worker thread.

get Waits for the computation to complete, then returns the result of the
computation (i.e., the return value of doInBackground).

publish Sends intermediate results from the doInBackground method to the pro-

cess method for processing on the event dispatch thread.

Fig. 26.23 | Commonly used SwingWorker methods. (Part 1 of 2.)

1096 Chapter 26 Multithreading

26.11.1 Performing Computations in a Worker Thread
In the next example, the user enters a number n and the program gets the nth Fibonacci
number, which we calculate using the recursive algorithm discussed in Section 18.4. Since
the algorithm is time consuming for large values, we use a SwingWorker object to perform
the calculation in a worker thread. The GUI also provides a separate set of components
that get the next Fibonacci number in the sequence with each click of a button, beginning
with fibonacci(1). This set of components performs its short computation directly in
the event dispatch thread. This program is capable of producing up to the 92nd Fibonacci
number—subsequent values are outside the range that can be represented by a long. Recall
that you can use class BigInteger to represent arbitrarily large integer values.

Class BackgroundCalculator (Fig. 26.24) performs the recursive Fibonacci calcula-
tion in a worker thread. This class extends SwingWorker (line 8), overriding the methods
doInBackground and done. Method doInBackground (lines 21–24) computes the nth
Fibonacci number in a worker thread and returns the result. Method done (lines 27–43)
displays the result in a JLabel.

process Receives intermediate results from the publish method and processes
these results on the event dispatch thread.

setProgress Sets the progress property to notify any property change listeners on the
event dispatch thread of progress bar updates.

1 // Fig. 26.24: BackgroundCalculator.java
2 // SwingWorker subclass for calculating Fibonacci numbers
3 // in a background thread.
4 import javax.swing.SwingWorker;
5 import javax.swing.JLabel;
6 import java.util.concurrent.ExecutionException;
7
8 public class BackgroundCalculator extends SwingWorker< Long, Object >
9 {

10 private final int n; // Fibonacci number to calculate
11 private final JLabel resultJLabel; // JLabel to display the result
12
13 // constructor
14 public BackgroundCalculator(int number, JLabel label)
15 {
16 n = number;
17 resultJLabel = label;
18 } // end BackgroundCalculator constructor

Fig. 26.24 | SwingWorker subclass for calculating Fibonacci numbers in a background thread.
(Part 1 of 2.)

Method Description

Fig. 26.23 | Commonly used SwingWorker methods. (Part 2 of 2.)

26.11 Multithreading with GUI 1097

SwingWorker is a generic class. In line 8, the first type parameter is Long and the second
is Object. The first type parameter indicates the type returned by the doInBackground

method; the second indicates the type that’s passed between the publish and process

methods to handle intermediate results. Since we do not use publish and process in this
example, we simply use Object as the second type parameter. We discuss publish and
process in Section 26.11.2.

A BackgroundCalculator object can be instantiated from a class that controls a GUI.
A BackgroundCalculator maintains instance variables for an integer that represents the
Fibonacci number to be calculated and a JLabel that displays the results of the calculation
(lines 10–11). The BackgroundCalculator constructor (lines 14–18) initializes these
instance variables with the arguments that are passed to the constructor.

19
20 // long-running code to be run in a worker thread
21 public Long doInBackground()
22 {
23 return nthFib = fibonacci(n);
24 } // end method doInBackground
25
26 // code to run on the event dispatch thread when doInBackground returns
27 protected void done()
28 {
29 try
30 {
31
32
33 } // end try
34 catch (InterruptedException ex)
35 {
36 resultJLabel.setText("Interrupted while waiting for results.");
37 } // end catch
38 catch (ExecutionException ex)
39 {
40 resultJLabel.setText(
41 "Error encountered while performing calculation.");
42 } // end catch
43 } // end method done
44
45 // recursive method fibonacci; calculates nth Fibonacci number
46 public long fibonacci(long number)
47 {
48 if (number == 0 || number == 1)
49 return number;
50 else
51 return fibonacci(number - 1) + fibonacci(number - 2);
52 } // end method fibonacci
53 } // end class BackgroundCalculator

Fig. 26.24 | SwingWorker subclass for calculating Fibonacci numbers in a background thread.
(Part 2 of 2.)

// get the result of doInBackground and display it
resultJLabel.setText(get().toString());

1098 Chapter 26 Multithreading

When method execute is called on a BackgroundCalculator object, the object is
scheduled for execution in a worker thread. Method doInBackground is called from the
worker thread and invokes the fibonacci method (lines 46–52), passing instance variable
n as an argument (line 23). Method fibonacci uses recursion to compute the Fibonacci
of n. When fibonacci returns, method doInBackground returns the result.

After doInBackground returns, method done is called from the event dispatch thread.
This method attempts to set the result JLabel to the return value of doInBackground by
calling method get to retrieve this return value (line 32). Method get waits for the result
to be ready if necessary, but since we call it from method done, the computation will be
complete before get is called. Lines 34–37 catch InterruptedException if the current
thread is interrupted while waiting for get to return. This exception will not occur in this
example since the calculation will have already completed by the time get is called. Lines
38–42 catch ExecutionException, which is thrown if an exception occurs during the
computation.

Class FibonacciNumbers
Class FibonacciNumbers (Fig. 26.25) displays a window containing two sets of GUI com-
ponents—one set to compute a Fibonacci number in a worker thread and another to get
the next Fibonacci number in response to the user’s clicking a JButton. The constructor
(lines 38–109) places these components in separate titled JPanels. Lines 46–47 and 78–
79 add two JLabels, a JTextField and a JButton to the workerJPanel to allow the user
to enter an integer whose Fibonacci number will be calculated by the BackgroundWorker.
Lines 84–85 and 103 add two JLabels and a JButton to the event dispatch thread panel
to allow the user to get the next Fibonacci number in the sequence. Instance variables n1
and n2 contain the previous two Fibonacci numbers in the sequence and are initialized to
0 and 1, respectively (lines 29–30). Instance variable count stores the most recently com-
puted sequence number and is initialized to 1 (line 31). The two JLabels display count

and n2 initially, so that the user will see the text Fibonacci of 1: 1 in the eventThread-

JPanel when the GUI starts.

Software Engineering Observation 26.4
Any GUI components that will be manipulated by SwingWorker methods, such as
components that will be updated from methods process or done, should be passed to the
SwingWorker subclass’s constructor and stored in the subclass object. This gives these
methods access to the GUI components they’ll manipulate.

1 // Fig. 26.25: FibonacciNumbers.java
2 // Using SwingWorker to perform a long calculation with
3 // results displayed in a GUI.
4 import java.awt.GridLayout;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9 import javax.swing.JPanel;

Fig. 26.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 1 of 4.)

26.11 Multithreading with GUI 1099

10 import javax.swing.JLabel;
11 import javax.swing.JTextField;
12 import javax.swing.border.TitledBorder;
13 import javax.swing.border.LineBorder;
14 import java.awt.Color;
15 import java.util.concurrent.ExecutionException;
16
17 public class FibonacciNumbers extends JFrame
18 {
19 // components for calculating the Fibonacci of a user-entered number
20 private final JPanel workerJPanel =
21 new JPanel(new GridLayout(2, 2, 5, 5));
22 private final JTextField numberJTextField = new JTextField();
23 private final JButton goJButton = new JButton("Go");
24 private final JLabel fibonacciJLabel = new JLabel();
25
26 // components and variables for getting the next Fibonacci number
27 private final JPanel eventThreadJPanel =
28 new JPanel(new GridLayout(2, 2, 5, 5));
29 private long n1 = 0; // initialize with first Fibonacci number
30 private long n2 = 1; // initialize with second Fibonacci number
31 private int count = 1; // current Fibonacci number to display
32 private final JLabel nJLabel = new JLabel("Fibonacci of 1: ");
33 private final JLabel nFibonacciJLabel =
34 new JLabel(String.valueOf(n2));
35 private final JButton nextNumberJButton = new JButton("Next Number");
36
37 // constructor
38 public FibonacciNumbers()
39 {
40 super("Fibonacci Numbers");
41 setLayout(new GridLayout(2, 1, 10, 10));
42
43 // add GUI components to the SwingWorker panel
44 workerJPanel.setBorder(new TitledBorder(
45 new LineBorder(Color.BLACK), "With SwingWorker"));
46 workerJPanel.add(new JLabel("Get Fibonacci of:"));
47 workerJPanel.add(numberJTextField);
48 goJButton.addActionListener(
49 new ActionListener()
50 {
51 public void actionPerformed(ActionEvent event)
52 {
53 int n;
54
55 try
56 {
57 // retrieve user's input as an integer
58 n = Integer.parseInt(numberJTextField.getText());
59 } // end try
60 catch(NumberFormatException ex)
61 {

Fig. 26.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 2 of 4.)

1100 Chapter 26 Multithreading

62 // display an error message if the user did not
63 // enter an integer
64 fibonacciJLabel.setText("Enter an integer.");
65 return;
66 } // end catch
67
68 // indicate that the calculation has begun
69 fibonacciJLabel.setText("Calculating...");
70
71
72
73
74
75 } // end method actionPerformed
76 } // end anonymous inner class
77); // end call to addActionListener
78 workerJPanel.add(goJButton);
79 workerJPanel.add(fibonacciJLabel);
80
81 // add GUI components to the event-dispatching thread panel
82 eventThreadJPanel.setBorder(new TitledBorder(
83 new LineBorder(Color.BLACK), "Without SwingWorker"));
84 eventThreadJPanel.add(nJLabel);
85 eventThreadJPanel.add(nFibonacciJLabel);
86 nextNumberJButton.addActionListener(
87 new ActionListener()
88 {
89 public void actionPerformed(ActionEvent event)
90 {
91 // calculate the Fibonacci number after n2
92 long temp = n1 + n2;
93 n1 = n2;
94 n2 = temp;
95 ++count;
96
97 // display the next Fibonacci number
98 nJLabel.setText("Fibonacci of " + count + ": ");
99 nFibonacciJLabel.setText(String.valueOf(n2));
100 } // end method actionPerformed
101 } // end anonymous inner class
102); // end call to addActionListener
103 eventThreadJPanel.add(nextNumberJButton);
104
105 add(workerJPanel);
106 add(eventThreadJPanel);
107 setSize(275, 200);
108 setVisible(true);
109 } // end constructor
110
111 // main method begins program execution
112 public static void main(String[] args)
113 {

Fig. 26.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 3 of 4.)

// create a task to perform calculation in background
BackgroundCalculator task =

new BackgroundCalculator(n, fibonacciJLabel);
task.execute(); // execute the task

26.11 Multithreading with GUI 1101

Lines 48–77 register the event handler for the goJButton. If the user clicks this
JButton, line 58 gets the value entered in the numberJTextField and attempts to parse it
as an integer. Lines 72–73 create a new BackgroundCalculator object, passing in the user-
entered value and the fibonacciJLabel that’s used to display the calculation’s results.
Line 74 calls method execute on the BackgroundCalculator, scheduling it for execution
in a separate worker thread. Method execute does not wait for the BackgroundCalcu-

lator to finish executing. It returns immediately, allowing the GUI to continue pro-
cessing other events while the computation is performed.

If the user clicks the nextNumberJButton in the eventThreadJPanel, the event han-
dler registered in lines 86–102 executes.Lines 92–95 add the previous two Fibonacci num-
bers stored in n1 and n2 to determine the next number in the sequence, update n1 and n2

to their new values and increment count. Then lines 98–99 update the GUI to display the
next number. The code for these calculations is in method actionPerformed, so they’re
performed on the event dispatch thread. Handling such short computations in the event
dispatch thread does not cause the GUI to become unresponsive, as with the recursive
algorithm for calculating the Fibonacci of a large number. Because the longer Fibonacci
computation is performed in a separate worker thread using the SwingWorker, it’s possible
to get the next Fibonacci number while the recursive computation is still in progress.

114 FibonacciNumbers application = new FibonacciNumbers();
115 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
116 } // end main
117 } // end class FibonacciNumbers

Fig. 26.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 4 of 4.)

a) Begin calculating Fibonacci of 40 in the
background

b) Calculating other Fibonacci values while
Fibonacci of 40 continues calculating

c) Fibonacci of 40 calculation finishes

1102 Chapter 26 Multithreading

26.11.2 Processing Intermediate Results with SwingWorker
We’ve presented an example that uses the SwingWorker class to execute a long process in
a background thread and update the GUI when the process is finished. We now present an
example of updating the GUI with intermediate results before the long process completes.
Figure 26.26 presents class PrimeCalculator, which extends SwingWorker to compute the
first n prime numbers in a worker thread. In addition to the doInBackground and done

methods used in the previous example, this class uses SwingWorker methods publish, pro-
cess and setProgress. In this example, method publish sends prime numbers to method
process as they’re found, method process displays these primes in a GUI component and
method setProgress updates the progress property. We later show how to use this prop-
erty to update a JProgressBar.

1 // Fig. 26.26: PrimeCalculator.java
2 // Calculates the first n primes, displaying them as they are found.
3 import javax.swing.JTextArea;
4 import javax.swing.JLabel;
5 import javax.swing.JButton;
6 import javax.swing.SwingWorker;
7 import java.util.Arrays;
8 import java.util.Random;
9 import java.util.List;

10 import java.util.concurrent.CancellationException;
11 import java.util.concurrent.ExecutionException;
12
13 public class PrimeCalculator extends SwingWorker< Integer, Integer >
14 {
15 private final Random generator = new Random();
16 private final JTextArea intermediateJTextArea; // displays found primes
17 private final JButton getPrimesJButton;
18 private final JButton cancelJButton;
19 private final JLabel statusJLabel; // displays status of calculation
20 private final boolean[] primes; // boolean array for finding primes
21
22 // constructor
23 public PrimeCalculator(int max, JTextArea intermediate, JLabel status,
24 JButton getPrimes, JButton cancel)
25 {
26 intermediateJTextArea = intermediate;
27 statusJLabel = status;
28 getPrimesJButton = getPrimes;
29 cancelJButton = cancel;
30 primes = new boolean[max];
31
32 // initialize all prime array values to true
33 Arrays.fill(primes, true);
34 } // end constructor
35
36 // finds all primes up to max using the Sieve of Eratosthenes
37 public Integer doInBackground()
38 {

Fig. 26.26 | Calculates the first n primes, displaying them as they are found. (Part 1 of 3.)

26.11 Multithreading with GUI 1103

39 int count = 0; // the number of primes found
40
41 // starting at the third value, cycle through the array and put
42 // false as the value of any greater number that is a multiple
43 for (int i = 2; i < primes.length; i++)
44 {
45 if (isCancelled()) // if calculation has been canceled
46 return count;
47 else
48 {
49
50
51 try
52 {
53 Thread.sleep(generator.nextInt(5));
54 } // end try
55 catch (InterruptedException ex)
56 {
57 statusJLabel.setText("Worker thread interrupted");
58 return count;
59 } // end catch
60
61 if (primes[i]) // i is prime
62 {
63
64 ++count;
65
66 for (int j = i + i; j < primes.length; j += i)
67 primes[j] = false; // i is not prime
68 } // end if
69 } // end else
70 } // end for
71
72 return count;
73 } // end method doInBackground
74
75
76
77
78
79
80
81
82 // code to execute when doInBackground completes
83 protected void done()
84 {
85 getPrimesJButton.setEnabled(true); // enable Get Primes button
86 cancelJButton.setEnabled(false); // disable Cancel button
87
88 int numPrimes;
89
90 try
91 {

Fig. 26.26 | Calculates the first n primes, displaying them as they are found. (Part 2 of 3.)

setProgress(100 * (i + 1) / primes.length);

publish(i); // make i available for display in prime list

// displays published values in primes list
protected void process(List< Integer > publishedVals)
{

for (int i = 0; i < publishedVals.size(); i++)
intermediateJTextArea.append(publishedVals.get(i) + "\n");

} // end method process

1104 Chapter 26 Multithreading

Class PrimeCalculator extends SwingWorker (line 13), with the first type parameter
indicating the return type of method doInBackground and the second indicating the type
of intermediate results passed between methods publish and process. In this case, both
type parameters are Integers. The constructor (lines 23–34) takes as arguments an integer
that indicates the upper limit of the prime numbers to locate, a JTextArea used to display
primes in the GUI, one JButton for initiating a calculation and one for canceling it, and
a JLabel used to display the status of the calculation.

Sieve of Eratosthenes
Line 33 initializes the elements of the boolean array primes to true with Arrays method
fill. PrimeCalculator uses this array and the Sieve of Eratosthenes algorithm (described
in Exercise 7.27) to find all primes less than max. The Sieve of Eratosthenes takes a list of
integers and, beginning with the first prime number, filters out all multiples of that prime.
It then moves to the next prime, which will be the next number that’s not yet filtered out,
and eliminates all of its multiples. It continues until the end of the list is reached and all
nonprimes have been filtered out. Algorithmically, we begin with element 2 of the bool-

ean array and set the cells corresponding to all values that are multiples of 2 to false to
indicate that they’re divisible by 2 and thus not prime. We then move to the next array
element, check whether it’s true, and if so set all of its multiples to false to indicate that
they’re divisible by the current index. When the whole array has been traversed in this way,
all indices that contain true are prime, as they have no divisors.

Method doInBackground
In method doInBackground (lines 37–73), the control variable i for the loop (lines 43–
70) controls the current index for implementing the Sieve of Eratosthenes. Line 45 calls
the inherited SwingWorker method isCancelled to determine whether the user has

92 numPrimes = get(); // retrieve doInBackground return value
93 } // end try
94 catch (InterruptedException ex)
95 {
96 statusJLabel.setText("Interrupted while waiting for results.");
97 return;
98 } // end catch
99 catch (ExecutionException ex)
100 {
101 statusJLabel.setText("Error performing computation.");
102 return;
103 } // end catch
104 catch (CancellationException ex)
105 {
106 statusJLabel.setText("Cancelled.");
107 return;
108 } // end catch
109
110 statusJLabel.setText("Found " + numPrimes + " primes.");
111 } // end method done
112 } // end class PrimeCalculator

Fig. 26.26 | Calculates the first n primes, displaying them as they are found. (Part 3 of 3.)

26.11 Multithreading with GUI 1105

clicked the Cancel button. If isCancelled returns true, method doInBackground returns
the number of primes found so far (line 46) without finishing the computation.

If the calculation isn’t canceled, line 49 calls setProgress to update the percentage of
the array that’s been traversed so far. Line 53 puts the currently executing thread to sleep
for up to 4 milliseconds. We discuss the reason for this shortly. Line 61 tests whether the
element of array primes at the current index is true (and thus prime). If so, line 63 passes
the index to method publish so that it can be displayed as an intermediate result in the
GUI and line 64 increments the number of primes found. Lines 66–67 set all multiples of
the current index to false to indicate that they’re not prime. When the entire array has
been traversed, line 72 returns the number of primes found.

Method process
Lines 76–80 declare method process, which executes in the event dispatch thread and re-
ceives its argument publishedVals from method publish. The passing of values between
publish in the worker thread and process in the event dispatch thread is asynchronous;
process might not be invoked for every call to publish. All Integers published since the
last call to process are received as a List by method process. Lines 78–79 iterate through
this list and display the published values in a JTextArea. Because the computation in
method doInBackground progresses quickly, publishing values often, updates to the
JTextArea can pile up on the event dispatch thread, causing the GUI to become sluggish.
In fact, when searching for a large number of primes, the event dispatch thread may receive
so many requests in quick succession to update the JTextArea that it runs out of memory
in its event queue. This is why we put the worker thread to sleep for a few milliseconds be-
tween calls to publish. The calculation is slowed just enough to allow the event dispatch
thread to keep up with requests to update the JTextArea with new primes, enabling the
GUI to update smoothly and remain responsive.

Method done
Lines 83–111 define method done. When the calculation is finished or canceled, method
done enables the Get Primes button and disables the Cancel button (lines 85–86). Line 92
gets the return value—the number of primes found—from method doInBackground.
Lines 94–108 catch the exceptions thrown by method get and display an appropriate mes-
sage in the statusJLabel. If no exceptions occur, line 110 sets the statusJLabel to indi-
cate the number of primes found.

Class FindPrimes
Class FindPrimes (Fig. 26.27) displays a JTextField that allows the user to enter a num-
ber, a JButton to begin finding all primes less than that number and a JTextArea to dis-
play the primes. A JButton allows the user to cancel the calculation, and a JProgressBar

indicates the calculation’s progress. The FindPrimes constructor (lines 32–125) sets up
the application’s GUI.

Lines 42–94 register the event handler for the getPrimesJButton. When the user
clicks this JButton, lines 47–49 reset the JProgressBar and clear the displayPrimes-

JTextArea and the statusJLabel. Lines 53–63 parse the value in the JTextField and dis-
play an error message if the value is not an integer. Lines 66–68 construct a new
PrimeCalculator object, passing as arguments the integer the user entered, the display-

PrimesJTextArea for displaying the primes, the statusJLabel and the two JButtons.

1106 Chapter 26 Multithreading

1 // Fig 26.27: FindPrimes.java
2 // Using a SwingWorker to display prime numbers and update a JProgressBar
3 // while the prime numbers are being calculated.
4 import javax.swing.JFrame;
5 import javax.swing.JTextField;
6 import javax.swing.JTextArea;
7 import javax.swing.JButton;
8 import javax.swing.JProgressBar;
9 import javax.swing.JLabel;

10 import javax.swing.JPanel;
11 import javax.swing.JScrollPane;
12 import javax.swing.ScrollPaneConstants;
13 import java.awt.BorderLayout;
14 import java.awt.GridLayout;
15 import java.awt.event.ActionListener;
16 import java.awt.event.ActionEvent;
17 import java.util.concurrent.ExecutionException;
18 import java.beans.PropertyChangeListener;
19 import java.beans.PropertyChangeEvent;
20
21 public class FindPrimes extends JFrame
22 {
23 private final JTextField highestPrimeJTextField = new JTextField();
24 private final JButton getPrimesJButton = new JButton("Get Primes");
25 private final JTextArea displayPrimesJTextArea = new JTextArea();
26 private final JButton cancelJButton = new JButton("Cancel");
27 private final JProgressBar progressJProgressBar = new JProgressBar();
28 private final JLabel statusJLabel = new JLabel();
29 private PrimeCalculator calculator;
30
31 // constructor
32 public FindPrimes()
33 {
34 super("Finding Primes with SwingWorker");
35 setLayout(new BorderLayout());
36
37 // initialize panel to get a number from the user
38 JPanel northJPanel = new JPanel();
39 northJPanel.add(new JLabel("Find primes less than: "));
40 highestPrimeJTextField.setColumns(5);
41 northJPanel.add(highestPrimeJTextField);
42 getPrimesJButton.addActionListener(
43 new ActionListener()
44 {
45 public void actionPerformed(ActionEvent e)
46 {
47 progressJProgressBar.setValue(0); // reset JProgressBar
48 displayPrimesJTextArea.setText(""); // clear JTextArea
49 statusJLabel.setText(""); // clear JLabel
50
51 int number; // search for primes up through this value

Fig. 26.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 1 of 3.)

26.11 Multithreading with GUI 1107

52
53 try
54 {
55 // get user input
56 number = Integer.parseInt(
57 highestPrimeJTextField.getText());
58 } // end try
59 catch (NumberFormatException ex)
60 {
61 statusJLabel.setText("Enter an integer.");
62 return;
63 } // end catch
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 // disable Get Primes button and enable Cancel button
88 getPrimesJButton.setEnabled(false);
89 cancelJButton.setEnabled(true);
90
91
92 } // end method ActionPerformed
93 } // end anonymous inner class
94); // end call to addActionListener
95 northJPanel.add(getPrimesJButton);
96
97 // add a scrollable JList to display results of calculation
98 displayPrimesJTextArea.setEditable(false);
99 add(new JScrollPane(displayPrimesJTextArea,
100 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
101 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER));
102

Fig. 26.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 2 of 3.)

// construct a new PrimeCalculator object
calculator = new PrimeCalculator(number,

displayPrimesJTextArea, statusJLabel, getPrimesJButton,
cancelJButton);

// listen for progress bar property changes
calculator.addPropertyChangeListener(

new PropertyChangeListener()
{

public void propertyChange(PropertyChangeEvent e)
{

// if the changed property is progress,
// update the progress bar
if (e.getPropertyName().equals("progress"))
{

int newValue = (Integer) e.getNewValue();
progressJProgressBar.setValue(newValue);

} // end if
} // end method propertyChange

} // end anonymous inner class
); // end call to addPropertyChangeListener

calculator.execute(); // execute the PrimeCalculator object

1108 Chapter 26 Multithreading

Lines 71–85 register a PropertyChangeListener for the PrimeCalculator object.
PropertyChangeListener is an interface from package java.beans that defines a single
method, propertyChange. Every time method setProgress is invoked on a PrimeCalcu-

103 // initialize a panel to display cancelJButton,
104 // progressJProgressBar, and statusJLabel
105 JPanel southJPanel = new JPanel(new GridLayout(1, 3, 10, 10));
106 cancelJButton.setEnabled(false);
107 cancelJButton.addActionListener(
108 new ActionListener()
109 {
110 public void actionPerformed(ActionEvent e)
111 {
112
113 } // end method ActionPerformed
114 } // end anonymous inner class
115); // end call to addActionListener
116 southJPanel.add(cancelJButton);
117 progressJProgressBar.setStringPainted(true);
118 southJPanel.add(progressJProgressBar);
119 southJPanel.add(statusJLabel);
120
121 add(northJPanel, BorderLayout.NORTH);
122 add(southJPanel, BorderLayout.SOUTH);
123 setSize(350, 300);
124 setVisible(true);
125 } // end constructor
126
127 // main method begins program execution
128 public static void main(String[] args)
129 {
130 FindPrimes application = new FindPrimes();
131 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
132 } // end main
133 } // end class FindPrimes

Fig. 26.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 3 of 3.)

calculator.cancel(true); // cancel the calculation

26.12 Interfaces Callable and Future 1109

lator, the PrimeCalculator generates a PropertyChangeEvent to indicate that the prog-
ress property has changed. Method propertyChange listens for these events. Line 78 tests
whether a given PropertyChangeEvent indicates a change to the progress property. If so,
line 80 gets the new value of the property and line 81 updates the JProgressBar with the
new progress property value.

The Get Primes JButton is disabled (line 88) so only one calculation that updates the
GUI can execute at a time, and the Cancel JButton is enabled (line 89) to allow the user
to stop the computation before it completes. Line 91 executes the PrimesCalculator to
begin finding primes. If the user clicks the cancelJButton, the event handler registered at
lines 107–115 calls PrimeCalculator’s method cancel (line 112), which is inherited from
class SwingWorker, and the calculation returns early. The argument true to method
cancel indicates that the thread performing the task should be interrupted in an attempt
to cancel the task.

26.12 Interfaces Callable and Future
Interface Runnable provides only the most basic functionality for multithreaded program-
ming. In fact, this interface has several limitations. Suppose a Runnable encounters a prob-
lem and tries to throw a checked exception. The run method is not declared to throw any
exceptions, so the problem must be handled within the Runnable—the exception cannot
be passed to the calling thread. Now suppose a Runnable is performing a long calculation
and the application wants to retrieve the result of that calculation. The run method cannot
return a value, so the application must use shared data to pass the value back to the calling
thread. This also involves the overhead of synchronizing access to the data. The developers
of the concurrency APIs recognized these limitations and created a new interface to fix
them. The Callable interface (of package java.util.concurrent) declares a single meth-
od named call. This interface is designed to be similar to the Runnable interface—allow-
ing an action to be performed concurrently in a separate thread—but the call method
allows the thread to return a value or to throw a checked exception.

An application that creates a Callable likely wants to run it concurrently with other
Runnables and Callables. The ExecutorService interface provides method submit,
which will execute a Callable passed in as its argument. The submit method returns an
object of type Future (of package java.util.concurrent), which is an interface that rep-
resents the executing Callable. The Future interface declares method get to return the
result of the Callable and provides other methods to manage a Callable’s execution.

26.13 Java SE 7: Fork/Join Framework
Java SE 7’s concurrency APIs include the new fork/join framework, which helps program-
mers parallelize algorithms. The framework is beyond the scope of this book. Experts tell
us that most Java programmers will benefit by this framework being used “behind the
scenes” in the Java API and other third party libraries.

The fork/join framework is particularly well suited to divide-and-conquer-style algo-
rithms, such as the merge sort that we implemented in Section 19.3.3. Recall that the
recursive algorithm sorts an array by splitting it into two equal-sized subarrays, sorting each
subarray, then merging them into one larger array. Each subarray is sorted by performing
the same algorithm on the subarray. For algorithms like merge sort, the fork/join frame-

1110 Chapter 26 Multithreading

work can be used to create parallel tasks so that they can be distributed across multiple pro-
cessors and be truly performed in parallel—the details of assigning the parallel tasks to
different processors are handled for you by the framework.

To learn more about the fork/join framework and Java multithreading in general,
please visit the sites listed in our Java Multithreading Resource Center at

26.14 Wrap-Up
In this chapter, you learned that concurrency has historically been implemented with op-
erating-system primitives available only to experienced systems programmers, but that
Java makes concurrency available to you through the language and APIs. You also learned
that the JVM itself creates threads to run a program, and that it also can create threads to
perform housekeeping tasks such as garbage collection.

We discussed the life cycle of a thread and the states that a thread may occupy during
its lifetime. Next, we presented the interface Runnable, which is used to specify a task that
can execute concurrently with other tasks. This interface’s run method is invoked by the
thread executing the task. We showed how to execute a Runnable object by associating it
with an object of class Thread. Then we showed how to use the Executor interface to
manage the execution of Runnable objects via thread pools, which can reuse existing
threads to eliminate the overhead of creating a new thread for each task and can improve
performance by optimizing the number of threads to ensure that the processor stays busy.

You learned that when multiple threads share an object and one or more of them
modify that object, indeterminate results may occur unless access to the shared object is
managed properly. We showed you how to solve this problem via thread synchronization,
which coordinates access to shared data by multiple concurrent threads. You learned sev-
eral techniques for performing synchronization—first with the built-in class ArrayBlock-
ingQueue (which handles all the synchronization details for you), then with Java’s built-in
monitors and the synchronized keyword, and finally with interfaces Lock and Condition.

We discussed the fact that Swing GUIs are not thread safe, so all interactions with and
modifications to the GUI must be performed in the event dispatch thread. We also dis-
cussed the problems associated with performing long-running calculations in the event
dispatch thread. Then we showed how you can use the SwingWorker class to perform long-
running calculations in worker threads. You learned how to display the results of a Swing-
Worker in a GUI when the calculation completed and how to display intermediate results
while the calculation was still in process.

Finally, we discussed the Callable and Future interfaces, which enable you to exe-
cute tasks that return results and to obtain those results, respectively. We use the multi-
threading techniques introduced in this chapter again in Chapter 27, Networking, to help
build multithreaded servers that can interact with multiple clients concurrently.

www.deitel.com/JavaMultithreading

Summary
Section 26.1 Introduction
• Historically, concurrency (p. 1046) has been implemented with operating-system primitives

available only to experienced systems programmers.

Summary 1111

• The Ada programming language made concurrency primitives widely available.

• Java makes concurrency available to you through the language and APIs.

• The JVM creates threads to run a program and for housekeeping tasks such as garbage collection.

Section 26.2 Thread States: Life Cycle of a Thread
• A new thread begins its life cycle in the new state (p. 1048). When the program starts the thread,

it’s placed in the runnable state. A thread in the runnable state is considered to be executing its task.

• A runnable thread transitions to the waiting state (p. 1048) to wait for another thread to perform a
task. A waiting thread transitions to runnable when another thread notifies it to continue executing.

• A runnable thread can enter the timed waiting state (p. 1048) for a specified interval of time, tran-
sitioning back to runnable when that time interval expires or when the event it’s waiting for occurs.

• A runnable thread can transition to the timed waiting state if it provides an optional wait interval
when it’s waiting for another thread to perform a task. Such a thread will return to the runnable
state when it’s notified by another thread or when the timed interval expires.

• A sleeping thread (p. 1049) remains in the timed waiting state for a designated period of time,
after which it returns to the runnable state.

• A runnable thread transitions to the blocked state (p. 1049) when it attempts to perform a task that
cannot be completed immediately and the thread must temporarily wait until that task completes.
At that point, the blocked thread transitions to the runnable state, so it can resume execution.

• A runnable thread enters the terminated state (p. 1049) when it successfully completes its task or
otherwise terminates (perhaps due to an error).

• At the operating-system level, the runnable state (p. 1048) encompasses two separate states. When
a thread first transitions to the runnable state from the new state, it’s in the ready state (p. 1049).
A ready thread enters the running state (p. 1049) when the operating system dispatches it.

• Most operating systems allot a quantum (p. 1049) or timeslice in which a thread performs its
task. When this expires, the thread returns to the ready state and another thread is assigned to the
processor.

• Thread scheduling determines which thread to dispatch based on thread priorities.

• The job of an operating system’s thread scheduler (p. 1050) is to determine which thread runs next.

• When a higher-priority thread enters the ready state, the operating system generally preempts the
currently running thread (an operation known as preemptive scheduling; p. 1050).

• Depending on the operating system, higher-priority threads could postpone—possibly indefi-
nitely (p. 1050)—the execution of lower-priority threads.

Section 26.3 Creating and Executing Threads with Executor Framework
• A Runnable (p. 1051) object represents a task that can execute concurrently with other tasks.

• Interface Runnable declares method run (p. 1051) in which you place the code that defines the
task to perform. The thread executing a Runnable calls method run to perform the task.

• A program will not terminate until its last thread completes execution.

• You cannot predict the order in which threads will be scheduled, even if you know the order in
which they were created and started.

• It’s recommended that you use the Executor interface (p. 1051) to manage the execution of Run-
nable objects. An Executor object typically creates and manages a group of threads—called a
thread pool (p. 1051).

• Executors (p. 1051) can reuse existing threads and can improve performance by optimizing the
number of threads to ensure that the processor stays busy.

1112 Chapter 26 Multithreading

• Executor method execute (p. 1051) receives a Runnable and assigns it to an available thread in
a thread pool. If there are none, the Executor creates a new thread or waits for one to become
available.

• Interface ExecutorService (of package java.util.concurrent; p. 1051) extends interface Exec-

utor and declares other methods for managing the life cycle of an Executor.

• An object that implements the ExecutorService interface can be created using static methods
declared in class Executors (of package java.util.concurrent).

• Executors method newCachedThreadPool (p. 1052) returns an ExecutorService that creates new
threads as they’re needed by the application.

• ExecutorService method execute executes its Runnable sometime in the future. The method re-
turns immediately from each invocation—the program does not wait for each task to finish.

• ExecutorService method shutdown (p. 1054) notifies the ExecutorService to stop accepting new
tasks, but continues executing existing tasks and terminates when those tasks complete execution.

Section 26.4 Thread Synchronization
• Thread synchronization (p. 1054) coordinates access to shared data by multiple concurrent

threads.

• By synchronizing threads, you can ensure that each thread accessing a shared object excludes all
other threads from doing so simultaneously—this is called mutual exclusion (p. 1054).

• A common way to perform synchronization is to use Java’s built-in monitors. Every object has a
monitor and a monitor lock (p. 1055). The monitor ensures that its object’s monitor lock is held
by a maximum of only one thread at any time, and thus can be used to enforce mutual exclusion.

• If an operation requires the executing thread to hold a lock while the operation is performed, a
thread must acquire the lock (p. 1055) before it can proceed with the operation. Any other
threads attempting to perform an operation that requires the same lock will be blocked until the
first thread releases the lock, at which point the blocked threads may attempt to acquire the lock.

• To specify that a thread must hold a monitor lock to execute a block of code, the code should be
placed in a synchronized statement (p. 1055). Such code is said to be guarded by the monitor
lock (p. 1055).

• The synchronized statements are declared using the synchronized keyword:

synchronized (object)
{

statements
} // end synchronized statement

where object is the object whose monitor lock will be acquired; object is normally this if it’s the
object in which the synchronized statement appears.

• Java also allows synchronized methods (p. 1055). Before executing, a non-static synchronized

method must acquire the lock on the object that’s used to call the method. Similary, a static

synchronized method must acquire the lock on the class that’s used to call the method.

• ExecutorService method awaitTermination (p. 1058) forces a program to wait for threads to
terminate. It returns control to its caller either when all tasks executing in the ExecutorService

complete or when the specified timeout elapses. If all tasks complete before the timeout elapses,
the method returns true; otherwise, it returns false.

• You can simulate atomicity (p. 1060) by ensuring that only one thread performs a set of operations
at a time. Atomicity can be achieved with synchronized statements or synchronized methods.

• When you share immutable data across threads, you should declare the corresponding data fields
final to indicate that variables’ values will not change after they’re initialized.

Summary 1113

Section 26.5 Producer/Consumer Relationship without Synchronization
• In a multithreaded producer/consumer relationship (p. 1062), a producer thread generates data

and places it in a shared object called a buffer. A consumer thread reads data from the buffer.

• Operations on a buffer data shared by a producer and a consumer should proceed only if the buf-
fer is in the correct state. If the buffer is not full, the producer may produce; if the buffer is not
empty, the consumer may consume. If the buffer is full when the producer attempts to write into
it, the producer must wait until there’s space. If the buffer is empty or the previous value was
already read, the consumer must wait for new data to become available.

Section 26.6 Producer/Consumer Relationship: ArrayBlockingQueue
• ArrayBlockingQueue (p. 1070) is a fully implemented buffer class from package java.util.con-

current that implements the BlockingQueue interface.

• An ArrayBlockingQueue can implement a shared buffer in a producer/consumer relationship.
Method put (p. 1070) places an element at the end of the BlockingQueue, waiting if the queue
is full. Method take (p. 1070) removes an element from the head of the BlockingQueue, waiting
if the queue is empty.

• ArrayBlockingQueue stores shared data in an array that’s sized with an argument passed to the
constructor. Once created, an ArrayBlockingQueue is fixed in size.

Section 26.7 Producer/Consumer Relationship with Synchronization
• You can implement a shared buffer yourself using the synchronized keyword and Object meth-

ods wait (p. 1073), notify and notifyAll.

• A thread can call Object method wait to release an object’s monitor lock, and wait in the waiting
state while the other threads try to enter the object’s synchronized statement(s) or method(s).

• When a thread executing a synchronized statement (or method) completes or satisfies the con-
dition on which another thread may be waiting, it can call Object method notify (p. 1073) to
allow a waiting thread to transition to the runnable state. At this point, the thread that was tran-
sitioned can attempt to reacquire the monitor lock on the object.

• If a thread calls notifyAll (p. 1073), then all the threads waiting for the monitor lock become
eligible to reacquire the lock (that is, they all transition to the runnable state).

Section 26.8 Producer/Consumer Relationship: Bounded Buffers
• You cannot make assumptions about the relative speeds of concurrent threads.

• A bounded buffer (p. 1080) can be used to minimize the amount of waiting time for threads that
share resources and operate at the same average speeds. If the producer temporarily produces val-
ues faster than the consumer can consume them, the producer can write additional values into
the extra buffer space (if any are available). If the consumer consumes faster than the producer
produces new values, the consumer can read additional values (if there are any) from the buffer.

• The key to using a bounded buffer with a producer and consumer that operate at about the same
speed is to provide the buffer with enough locations to handle the anticipated “extra” production.

• The simplest way to implement a bounded buffer is to use an ArrayBlockingQueue for the buffer
so that all of the synchronization details are handled for you.

Section 26.9 Producer/Consumer Relationship: The Lock and Condition Interfaces
• The Lock and Condition interfaces (p. 1087) give programmers more precise control over thread

synchronization, but are more complicated to use.

• Any object can contain a reference to an object that implements the Lock interface (of package
java.util.concurrent.locks). A thread calls the Lock’s lock method (p. 1086) to acquire the

1114 Chapter 26 Multithreading

lock. Once a Lock has been obtained by one thread, the Lock object will not allow another thread
to obtain the Lock until the first thread releases the Lock (by calling the Lock’s unlock method;
p. 1086).

• If several threads are trying to call method lock on the same Lock object at the same time, only
one thread can obtain the lock—the others are placed in the waiting state. When a thread calls
unlock, the object’s lock is released and a waiting thread attempting to lock the object proceeds.

• Class ReentrantLock (p. 1087) is a basic implementation of the Lock interface.

• The ReentrantLock constructor takes a boolean that specifies whether the lock has a fairness pol-
icy (p. 1087). If true, the ReentrantLock’s fairness policy is “the longest-waiting thread will ac-
quire the lock when it’s available”—this prevents indefinite postponement. If the argument is set
to false, there’s no guarantee as to which waiting thread will acquire the lock when it’s available.

• If a thread that owns a Lock determines that it cannot continue with its task until some condition
is satisfied, the thread can wait on a condition object (p. 1087). Using Lock objects allows you to
explicitly declare the condition objects on which a thread may need to wait.

• Condition (p. 1087) objects are associated with a specific Lock and are created by calling Lock

method newCondition, which returns a Condition object. To wait on a Condition, the thread
can call the Condition’s await method. This immediately releases the associated Lock and places
the thread in the waiting state for that Condition. Other threads can then try to obtain the Lock.

• When a runnable thread completes a task and determines that a waiting thread can now continue,
the runnable thread can call Condition method signal to allow a thread in that Condition’s wait-
ing state to return to the runnable state. At this point, the thread that transitioned from the wait-
ing state to the runnable state can attempt to reacquire the Lock.

• If multiple threads are in a Condition’s waiting state when signal is called, the default imple-
mentation of Condition signals the longest-waiting thread to transition to the runnable state.

• If a thread calls Condition method signalAll, then all the threads waiting for that condition
transition to the runnable state and become eligible to reacquire the Lock.

• When a thread is finished with a shared object, it must call method unlock to release the Lock.

• Locks allow you to interrupt waiting threads or to specify a timeout for waiting to acquire a
lock—not possible with synchronized. Also, a Lock object is not constrained to be acquired and
released in the same block of code, which is the case with the synchronized keyword.

• Condition objects allow you to specify multiple conditions on which threads may wait. Thus, it’s
possible to indicate to waiting threads that a specific condition object is now true by calling that
Condition object’s signal or signallAll methods (p. 1087). With synchronized, there’s no way
to explicitly state the condition on which threads are waiting.

Section 26.11 Multithreading with GUI
• The event dispatch thread (p. 1095) handles interactions with the application’s GUI compo-

nents. All tasks that interact with the GUI are placed in an event queue and executed sequentially
by this thread.

• Swing GUI components are not thread safe. Thread safety is achieved by ensuring that Swing
components are accessed from only the event dispatch thread.

• Performing a lengthy computation in response to a user interface interaction ties up the event
dispatch thread, preventing it from attending to other tasks and causing the GUI components to
become unresponsive. Long-running computations should be handled in separate threads.

• You can extend generic class SwingWorker (p. 1095; package javax.swing), which implements
Runnable, to perform long-running computations in a worker thread and to update Swing com-
ponents from the event dispatch thread based on the computations’ results. You override its

Self-Review Exercises 1115

doInBackground and done methods. Method doInBackground performs the computation and re-
turns the result. Method done displays the results in the GUI.

• Class SwingWorker’s first type parameter indicates the type returned by the doInBackground

method; the second indicates the type that’s passed between the publish and process methods
to handle intermediate results.

• Method doInBackground is called from a worker thread. After doInBackground returns, method
done is called from the event dispatch thread to display the results.

• An ExecutionException is thrown if an exception occurs during the computation.

• SwingWorker method publish repeatedly sends intermediate results to method process, which
displays the results in a GUI component. Method setProgress updates the progress property.

• Method process executes in the event dispatch thread and receives data from method publish.
The passing of values between publish in the worker thread and process in the event dispatch
thread is asynchronous; process is not necessarily invoked for every call to publish.

• PropertyChangeListener (p. 1108) is an interface from package java.beans that defines a single
method, propertyChange. Every time method setProgress is invoked, a PropertyChangeEvent

is generated to indicate that the progress property has changed.

Section 26.12 Interfaces Callable and Future
• The Callable (p. 1109) interface (of package java.util.concurrent) declares a single method

named call that allows the thread to return a value or to throw a checked exception.

• ExecutorService method submit (p. 1109) executes a Callable passed in as its argument.

• Method submit returns an object of type Future (of package java.util.concurrent) that repre-
sents the executing Callable. Interface Future (p. 1109) declares method get to return the result
of the Callable and provides other methods to manage a Callable’s execution.

Section 26.13 Java SE 7: Fork/Join Framework
• Java SE 7’s concurrency APIs include the new fork/join framework, which helps programmers

parallelize algorithms. The fork/join framework particularly well suited to divide-and-conquer-
style algorithms, like the merge sort.

Self-Review Exercises
26.1 Fill in the blanks in each of the following statements:

a) A thread enters the terminated state when .
b) To pause for a designated number of milliseconds and resume execution, a thread

should call method of class .
c) Method of class Condition moves a single thread in an object’s waiting state

to the runnable state.
d) Method of class Condition moves every thread in an object’s waiting state to

the runnable state.
e) A(n) thread enters the state when it completes its task or other-

wise terminates.
f) A runnable thread can enter the state for a specified interval of time.
g) At the operating-system level, the runnable state actually encompasses two separate

states, and .
h) Runnables are executed using a class that implements the interface.
i) ExecutorService method ends each thread in an ExecutorService as soon

as it finishes executing its current Runnable, if any.

1116 Chapter 26 Multithreading

j) A thread can call method on a Condition object to release the associated Lock

and place that thread in the state.
k) In a(n) relationship, the generates data and stores it in a shared

object, and the reads data from the shared object.
l) Class implements the BlockingQueue interface using an array.
m) Keyword indicates that only one thread at a time should execute on an ob-

ject.

26.2 State whether each of the following is true or false. If false, explain why.
a) A thread is not runnable if it has terminated.
b) Some operating systems use timeslicing with threads. Therefore, they can enable threads

to preempt threads of the same priority.
c) When the thread’s quantum expires, the thread returns to the running state as the op-

erating system assigns it to a processor.
d) On a single-processor system without timeslicing, each thread in a set of equal-priority

threads (with no other threads present) runs to completion before other threads of equal
priority get a chance to execute.

Answers to Self-Review Exercises
26.1 a) its run method ends. b) sleep, Thread. c) signal. d) signalAll. e) runnable, terminated.
f) timed waiting. g) ready, running. h) Executor. i) shutdown. j) await, waiting. k) producer/consum-
er, producer, consumer. l) ArrayBlockingQueue. m) synchronized.

26.2 a) True. b) False. Timeslicing allows a thread to execute until its timeslice (or quantum)
expires. Then other threads of equal priority can execute. c) False. When a thread’s quantum ex-
pires, the thread returns to the ready state and the operating system assigns to the processor another
thread. d) True.

Exercises
26.3 (True or False) State whether each of the following is true or false. If false, explain why.

a) Method sleep does not consume processor time while a thread sleeps.
b) Declaring a method synchronized guarantees that deadlock cannot occur.
c) Once a ReentrantLock has been obtained by a thread, the ReentrantLock object will not

allow another thread to obtain the lock until the first thread releases it.
d) Swing components are thread safe.

26.4 (Multithreading Terms) Define each of the following terms.
a) thread
b) multithreading
c) runnable state
d) timed waiting state
e) preemptive scheduling
f) Runnable interface
g) notifyAll method
h) producer/consumer relationship
i) quantum

26.5 (Multithreading Terms) Discuss each of the following terms in the context of Java’s thread-
ing mechanisms:

a) synchronized

b) producer
c) consumer

Exercises 1117

d) wait

e) notify

f) Lock

g) Condition

26.6 (Blocked State) List the reasons for entering the blocked state. For each of these, describe
how the program will normally leave the blocked state and enter the runnable state.

26.7 (Deadlock and Indefinite Postponement) Two problems that can occur in systems that al-
low threads to wait are deadlock, in which one or more threads will wait forever for an event that
cannot occur, and indefinite postponement, in which one or more threads will be delayed for some
unpredictably long time. Give an example of how each of these problems can occur in multithread-
ed Java programs.

26.8 (Bouncing Ball) Write a program that bounces a blue ball inside a JPanel. The ball should
begin moving with a mousePressed event. When the ball hits the edge of the JPanel, it should
bounce off the edge and continue in the opposite direction. The ball should be updated using a Run-
nable.

26.9 (Bouncing Balls) Modify the program in Exercise 26.8 to add a new ball each time the user
clicks the mouse. Provide for a minimum of 20 balls. Randomly choose the color for each new ball.

26.10 (Bouncing Balls with Shadows) Modify the program in Exercise 26.9 to add shadows. As a
ball moves, draw a solid black oval at the bottom of the JPanel. You may consider adding a 3-D
effect by increasing or decreasing the size of each ball when it hits the edge of the JPanel.

26.11 (Circular Buffer with Locks and Conditions) Reimplement the example in Section 26.8 us-
ing the Lock and Condition concepts presented in Section 26.9.

