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Abstract— We propose a general framework of the iterative
local solution (ILS) for computing a connected dominating set
(CDS) in ad hoc wireless networks, which include wireless sensor
networks (WSNs) and mobile ad hoc networks (MANETs). This
approach uses an iterative application of a selected local solution.
Each application of the local solution enhances the result obtained
from the previous iteration, but each is based on a different node
priority scheme. Then, we integrate this iterative process into
the process for handling dynamic network topology and propose
two extensions:cyclic iterative local solution(CILS) and seamless
iterative local solution(SILS). CILS offers a natural extension
of ILS to the dynamic environment, but suffers from broken
CDS and non-adaptiveness. With a novel use of a monotonically
increasing sequence number for dynamic node priority, SILS
offers an extension with the desirable properties of correctness,
progressiveness, locality, and seamlessness. Extensive simulations
are conducted to evaluate the effectiveness of the proposed
approach in both static and dynamic environments.

I. I NTRODUCTION

In ad hoc wireless networks, which includes wireless sensor
networks (WSNs) and mobile ad hoc networks (MANETs),
various algorithmic solutions can be classified intoglobal,
quasi-global, quasi-local, and local [20] depending on the
amount of information used by each node to determine a
solution for a specific problem (such as connected dominating
set (CDS) as a virtual backbone in MANETS [19] and for
coverage in WSNs [9], and network topology control for
saving energy and reducing signal interference in MANETs
[3]). Dominating sets (DS) have been widely used in the
selection process of active node sets in ad hoc wireless
networks. A set is dominating if every node in the network is
either in the set or a neighbor of a node in the set. When active
nodes form a dominating set, all nodes in the network are
also said to be reachable. When a DS is connected, where any
two nodes in the DS can be connected through intermediate
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nodes from the DS, it is denoted as a connected dominating
set (CDS).

The local approach uses local information to determine node
status and such status does not propagate; i.e., the status of
each node does not depend on the status of its neighbors.
Therefore, the local approach is the most desirable to support
scalable design through localized maintenance in a dynamic
environment (also called locality). In the construction of a
CDS, the status of a node is either inside or outside the selected
CDS; whereas in network topology control, the status of each
node is the selected transmission range for the node.

One potential problem of local solutions is low efficiency
(i.e., the quality of results). In CDS construction the quality
is measured by the size of CDS and in topology control it is
measured by the transmission range subject to connectivity.
In this paper, we present a general framework of theiterative
local solution(ILS) that relaxes the non-propagation constraint
of local solutions to improve efficiency. Each application of
a selected local solution enhances the result obtained from
the previous iteration, but based on a different node priority
scheme. However, ILS still keeps locality; that is, ILS can
quickly provide a solution after a network topology change.

Figure 1 shows the difference between global, local, and
iterative local solutions where time is slotted into rounds each
of which is a square block. Each round is measured as one or
more “Hello” message exchanges in ad hoc wireless networks.
To simplify the discussion, local solutions take one round to
generate a solution. Both gray and black blocks correspond
to correct results generated at respective rounds, with the
darker the color of a block, the higher the efficiency of the
result generated at the corresponding round. ILS can quickly
generate a result, albeit inefficient, and then improves it over
iterations before the next network topology change (repre-
sented by a vertical line in the figure). In global solutions, an
efficient solution can be generated after several rounds (say
r). However, if the network topology changes frequently, no
results can be generated in global solutions as in Figure 1



2

time

���������������������
���������������������

���������������������
���������������������

���������������
���������������

������
���
���
������

	�		�	
�

�

������
���
���
������

�������� ���
���
������
������
���
���
������

C Ctopology change C 321

iterative local

local

global

r

Fig. 1. Comparison among global, local, and iterative local solutions.

where the distance between two changes (c2 and c3) is less
thanr. Note that in ILS nodes exchange new node priority and
node status between rounds while in global solutions nodes
exchange link state information.

In this paper, we focus on using ILS to calculate a CDS,
with the objective of reducing the CDS size over a number of
iterations. Here ILS is first discussed in a static environment,
followed by its extensions in a dynamic environment. This
framework is illustrated using Dai and Wu’s Rule K [6],
an extension of Wu and Li’s marking process [19], as a
local solution. Each node determines its status:marked(inside
CDS) or unmarked(outside CDS), based on local topology
information and node priority in the neighborhood. Basically,
a node can be unmarked if its neighborhood can be covered
(dominated) by a set of nodes with higher priorities and these
nodes are connected by themselves.

When applying ILS to a static environment, each node
collects topology information withinh hops (for a small
constanth), collecting h-hop information in what is called
one round (iteration), and then determines its node status,
marked or unmarked, through an iterative process with a
constant number (k) of iterations. During each iteration, nodes
are assigned different priorities so that more nodes can be
unmarked as the process iterates. When applying ILS to a
dynamic environment, the challenges lie in seamlessly blend-
ing topology changes into the scheme so that the following
properties are maintained:

• Correctness: The CDS should be maintained at the end
of each iteration (round) unless a new topology change
occurs during the iteration.

• Progressiveness: The CDS size should be monotonically
decreasing between iterations when there is no topology
change.

• Locality : A topology change only affects the status of
nodes in the local neighborhood, where the hop count in
such a neighborhood depends onh.

• Seamlessness: The effects of the iterative process and
topology change are integrated in a seamless way.

We propose two extensions of ILS:cyclic iterative local
solution (CILS) andseamless iterative local solution(SILS).

CILS offers a natural extension of ILS to the dynamic envi-
ronment where ILS is cyclically applied for everyk iterations.
However, none of the above properties can be maintained.
With a novel use of a monotonically increasing sequence
number for dynamic node priority, SILS offers an extension
with the desirable properties of correctness, progressiveness,
locality, and seamlessness. Due to the space limit, all proofs
of the theorems in this paper are omitted.

II. RELATED WORK

Our objective is to find a CDS that covers a unit disk
graph representing a MANET based on local information. The
problem of finding a minimum CDS (MCDS) is NP-complete
for both general graphs [4] and unit disk graphs [12]. Heuristic
algorithms to construct a CDS fall into four groups: global
[7], quasi-global [17], quasi-local [20], and local [14], [16],
[18], [19]. Many local solutions rely on node priorities to
avoid simultaneous withdrawals in mutual coverage cases. One
drawback of these priority-based schemes is that they may
select a large CDS based on a bad priority assignment. At-
tempts have been made to mitigate this problem. For example,
Stojmenovic [13], [14] proposed to reduce the CDS size via
adaptive interpretation of priority values. In these schemes, the
priority assignment is fixed; therefore, they cannot effectively
eliminate redundant dominating nodes. In [1], a mechanism
is applied to dynamically maintain the CDS property in a
dynamic environment, not dynamically reduce the CDS size
over time.

Several iterative approaches have been proposed to find
a small DS [8], [10] or CDS [11] in MANETs. In [8],
Gao et al gave a basic algorithm to find a DS with an
expected approximation ratio ofO(

√
n), where each node

designates a node with the highest priority in its neighborhood
as a dominator. To obtain an expectedO(1) approximation
ratio, the basic algorithm is repeatedlog(log n) times using
exponentially growing transmission ranges. In another iterative
DS algorithm proposed by Kuhn and Wattenhofer [10], each
nodev becomes a dominator with a probabilitypv. If there are
still uncovered nodes (i.e., nodes without neighboring domi-
nators) after this process, these uncovered nodes also become
dominators. The probabilitypv is computed via a distributed
linear programming algorithm that takesk2 iterations with
an adjustable parameterk. The iterative algorithm has an
expected approximation ratio ofO(k∆2/k log ∆), where ∆
is the maximal node degree.

Liu, Pan, and Cao [11] proposed an iterative extension of
Wu and Li’s marking process and Rules 1 and 2 [19] for the
local construction of a CDS. In the marking process, a node
becomes a dominator (marked) if it has two neighbors that
are not directly connected. According to Rule 1, a marked
node can change back to a non-dominator (unmarked), if all
its neighbors are also neighbors of another marked node with
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a higher priority (called acoverage node). In Rule 2, a marked
node can be unmarked if its neighbor set is covered jointly by
two connected coverage nodes. The iterative extension takes
six rounds. The marking process is applied in round 1. Rule 1
is applied in round 2 with one priority (lower node ID has a
higher priority) and round 3 with another one (higher node ID
has a higher priority). Finally, Rule 2 is applied in rounds 4, 5,
and 6 with different priority functions. This approach produces
a smaller CDS than the original marking process and Rules 1
and 2.

None of the above approaches address the CDS maintenance
issue in dynamic networks, where topology changes, such as
link switched-on/off and node switched-on/off, occur during
the iterative process. This paper proposes an iterative scheme
that integrates the CDS maintenance mechanism into the
iterative CDS reduction process, and maintains a CDS at each
round of iteration.

III. I TERATIVE LOCAL SOLUTION (ILS) IN A STATIC

ENVIRONMENT

This section starts with a general model for iterative local
solution (ILS), which extends a scheme proposed by Liu, Pan,
and Cao [11]. Dai and Wu’s Rule K [6] is used to illustrate
the model. The section ends with a discussion of various ways
of generating dynamic node priority based on node IDs.

A. General model

Algorithm 1 k-round Iterative Local Solution (at each node
v)

1: Each node collects local topology information and applies
a local solution to determine its status (marked or un-
marked).

2: The process completes if the number of iterations reaches
k; otherwise, each node selects a new priority and ex-
changes status (and priority if needed) with neighbors.

3: Apply the local solution again based on new node status
and node priority. Go to step 2 for the next iteration.

Algorithm 1 shows ak-round ILS, where local topology
information can be defined in different ways. One possible
definition is theh-hop information that will be discussed in
the next subsection. Again, we assume that the collection of
h-hop information corresponds to one round. The number of
iterationsk is a constant and adjustable parameter.

B. Local solution selection

We use an extension of Wu and Li’s marking process
[19], called Rule K [6], in the iterative local solution (ILS).
The following rule is among the most efficient (in terms of
producing a small CDS) non-iterative local solutions.

Algorithm 2 Rule K as Local Solution
A node is unmarked if its neighbors form a clique, or
are dominated by a set of connected nodes with higher
priorities.

Formally speaking, a MANET can be represented by an
undirected graphG = (V, E), whereV is the set of nodes and
E the set of links.N(v) = {u|(u, v) ∈ E} denote the neighbor
set of v. Given a node setS ⊆ V , N(S) =

⋃
v∈S .N(v) is

the set of nodes dominated byS. A nodev can be unmarked
if

1) (u,w) ∈ E for all u,w ∈ N(v), or
2) there exists a set ofcoverage nodesS = {v1, v2, ...,

vK}, such thatv1, v2, ..., vK have higher priorities than
v, the derived subgraphG(S) is connected, andN(v)−
S ⊆ N(S).

Applying Rule K requiresh-hop information for h ≥
2. By h-hop information we mean the topology and other
relevant information (e.g., node priorities) collected at each
node viah “Hello” message exchanges among neighbors. For
each nodev, its h-hop information is a subgraphGh(v) =
(Nh(v), Eh(v)) of the MANET. Nh(v) is v’s h-hop neigh-
bor set, defined as follows:N0(v) = {v} and Nh(v) =⋃

u∈N(v) Nh−1(u) for h ≥ 1. Eh(v) are links amongh-hop
neighbors, excluding links between two nodes that are exactly
h hops away fromv; that is,Eh(v) ⊆ (Nh−1(v) × Nh(v)).
The overhead for collectingh-hop information ish messages
per node. Each message includesGh−1(v) of the current node
v and is of sizeO(∆h−1), where ∆ is the maximal node
degree. A smallh is usually used to balance performance and
overhead, such ash = 2 in the restricted Rule K, which incurs
O(∆) messaging cost andO(∆2) computing cost per node [6].

In order to use Rule K in the iterative local solution,h-
hop information should also include the priorities and status
of h-hop neighbors. In addition, the following restrictions are
observed:

1) Initially, all nodes are considered marked.
2) At each round, only marked nodes use Rule K to

determine their status, marked or unmarked, after this
round. Unmarked nodes stay unmarked.

3) When applying Rule K, only marked nodes can be used
as coverage nodes to unmark other marked nodes.

The resultant iterative local solution is called theiterative
Rule K. Figure 2 shows a sample execution of iterative Rule
K on a static network with 10 nodes. The restricted Rule K
is used, i.e.,h = 2. Each node is assigned a random priority
at each round (iteration), which is visible to its neighbors. In
round 1, three nodes with priorities 1, 3, and 4 are unmarked
(represented by gray circles), because their neighbors are
also neighbors of a node with a priority 6. Other nodes are
marked (represented by black circles), which form a CDS.
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Fig. 2. The first four iterations (a-d) of iterative Rule K in a static network
with 2-hop information (i.e., Rule K is restricted). Black nodes are marked
(i.e., in the CDS), white nodes are unmarked, and gray nodes are newly
unmarked at each round. Labels of black and gray nodes are their priorities.
Priorities of white nodes are irrelevant and omitted.

In round 2, the status of three unmarked nodes (represented
by white circles) is propagated to their neighbors, which will
not consider them as coverage nodes in applying Rule K.
According to the new priority assignments, four nodes with
priorities 4, 4, 5, and 2 are unmarked. In round 3, no node is
unmarked based on the new priority assignment. In round 4,
however, another node with priority 3 is unmarked.

Let V1, V2, . . . , Vk denote the sets of marked nodes af-
ter iterations1, 2, . . . , k, respectively. The following theorem
shows the correctness and effectiveness of the iterative Rule
K. Here we assume a static network that is connected but not
completely connected.

Theorem 1:In iterative Rule K,Vi is a CDS for all1 ≤
i ≤ k, and |Vi+1| ≤ |Vi| for all 1 ≤ i ≤ k − 1.

After enough rounds of iteration, the marked node set is
stabilized; that is, no more marked nodes can be unmarked
regardless of the priority assignment.

Definition 1: An iterative local solution is stabilized at
round k

′
, if the set of marked nodes does not change after

roundk
′
, i.e., Vk′ = Vk′+1 = . . . = Vk.

In the sample network of Figure 2, the iterative Rule K is
stabilized at round 4. The two marked nodes in Figure 2 (d)
cannot be unmarked based on any priority assignment. When
the iterative Rule K takesk′ rounds to stabilize, the sets of
marked nodesV1, V2, . . . , Vk′ change significantly in terms of
both set size and set members. The specific value ofk′ depends
on the priority rotation scheme and network topology. For
example, the number of marked nodes in Figure 2 is 7, 3,
3, and 2 in the first four rounds. A good priority assignment
should achieve a fast convergence, i.e., stabilized in roundk

′

with a smallk
′
, and converge to a small CDS as well.

C. Node priority rotation

There are several ways to rotate node priority (the corre-
sponding scheme is called dynamic node priority). Here we
denote priority as a functionp(v, i) of round numberi and
node IDv, where the IP (or MAC) address of each node can
be used as its ID. To simplify the discussion, we assume that
the initial priorities ofn nodes are integers taken from[1..n].
In reality, a hash function can be used to map an IP address to
an integer priority in[1..n]. Different nodes can have the same
hash value as priority, since many local solutions (including
Rule K [6]) support the same node priority case, but with less
efficiency. In fact, as long as no conflict exists in the local
neighborhood, efficiency will not be sacrificed.

Preposition 1: If n = (∆h)2 is a hash function randomly
chosen from a universal class of hash functions, then the
probability of a node priority collision with any node in its
h-hop neighborhood is less than1/(2∆h).

This preposition can be easily derived from a result in [5].
Note that whenh is small the conditionn = (∆h)2 can be
easily satisfied.

In the following, we will examine three possible priority
rotation schemes.

• Shifting. Initially, the prioritiesp(v, 0) of all nodesv ∈ V

are1, 2, . . . , n, respectively. At each roundi, the priority
of each nodev is defined as

p(v, i) = (p(v, i− 1) + s) mod n

wheres = bn/kc. The pattern of the priority change can
be described as a circulars-shift.

• Shuffling. In this scheme, node priority is changed more
dramatically from round to round following theperfect
shuffle[15] scheme. Node priority, represented as a binary
string, is circularly shifted left one bit per iteration. That
is,

p(v, i) = (p(v, i− 1)× 2) mod 2k + bp(v, i− 1)/2k−1c
Here we assume the iteration limitk satisfies2k ≥ n.

• Random. Node priority is randomly selected from[1..n]
at each round, i.e.,

p(v, i) = rnd() mod n

where rnd() is a pseudo-random number generator.
Several nodes can have the same priority. The major
difference between the deterministic approach (including
the above shifting and shuffling schemes) and the random
approach is that in the former, neighbors exchange node
status (marked/unmarked) only (except the first round,
where initial node priorities are also exchanged), whereas
in the latter, neighbors need to exchange both node status
and random node priorities generated at the current round.

The efficiency of these priority rotation schemes in ILS will
be evaluated in the simulation section.
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IV. SEAMLESS ITERATIVE LOCAL SOLUTION (SILS) IN A

DYNAMIC ENVIRONMENT

In this section, we start with a natural extension, the cyclic
iterative local solution (CILS), to be used in a dynamic
environment. Then we give a novel extension of the iterative
local solution, theseamless iterative local solution(SILS).

A. Cyclic iterative local solution (CILS)

In a static environment without topology changes, the
iterative local solution can produce a small CDS afterk′

rounds of iteration, wherek′ is the number of rounds needed
for stabilization. In a dynamic environment with node mo-
bility (modelled as link switched-on/off operations and node
switched-on/off operations), each node must re-decide its
status periodically to maintain the CDS property. A natural,
but somewhat naive, extension of the iterative local solution,
called cyclic iterative local solution(CILS), can be used to
handle topology changes. In this scheme, all nodes will reset
their status and the process will start over again for everyk

rounds of iteration. That is, all nodes are considered marked
again in roundk + 1, and become gradually unmarked in the
following k rounds:k + 1, k + 2, . . . , 2k. The same process
will repeat in rounds2k+1, 2k+2, . . . , 3k and so on. Figure 3
(a) shows the general pattern of the CDS size with respect to
the number of rounds. Such a scheme has certain limitations
and we again use Rule K to illustrate.

However, CILS suffers from the following drawbacks:

• Broken CDS. The cyclic scheme guarantees a CDS,Vi,
for 1 ≤ i ≤ k only if there is no topology change during
thesek iterations. If a topology change occurs in roundi,
thenVi+1, Vi+2, . . . , Vk may not be a CDS. For example,
if the left node with priority 6 in Figure 2 (a) switches off
after round 1, the set of marked nodes in the following
rounds cannot form a CDS.

• Non-adaptiveness. The selection ofk in the cyclic
scheme is non-adaptive. The cycle repeats even in a
static environment. On the other hand, a largek will
increase the probability of a broken CDS in a dynamic
environment.

In fact, a broken CDS violates the correctness property.
Non-adaptiveness destroys the progressiveness property, in
which CDS should be monotonically decreasing when there
is no topology change. The non-adaptiveness also makes the
seamlessness property fail, since an explicit counter is needed
to keep track of iteration. The nature of cyclic application
also breaks the locality property because the locality property
must ensure that the number and selection of marked nodes
does not change significantly after each topology change. The
seamless iterative local solution (SILS) discussed in the next
section meets all the above properties.

C
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round with a topology change

(b)

Round number
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3k2kk
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Round number

Fig. 3. Two extensions to dynamic environments: (a) cyclic iterative local
solution, (b) seamless iterative local solution.

B. Seamless iterative local solution (SILS)

Again, we use Rule K to illustrate SILS, and the corre-
sponding approach is called theseamless iterative Rule K.
The basic idea is that the CDS formation process continues
beyondk rounds of iteration. Node status (marked/unmarked)
is adjusted in reaction to topology changes as the process
iterates. These adjustments are conducted smoothly in small
vicinities of topology changes without a global reset operation.
Two important changes are made in this extension.

1) At each round, Rule K is applied at all nodes, marked
or unmarked previously, to determine their new status.
Note that in the original iterative solution (Section III-
B), only a marked node may change its status as stated
in restriction 2.

2) Node status is no longer exchanged among neighbors.
The restriction 3 in the iterative Rule K (only marked
nodes can be coverage nodes) is removed.

In the new extension, the original Rule K is applied based
on h-hop information with a smallh, including topology
and priority information. At the beginning of each roundi,
each node collects the latesth-hop information throughh
rounds of “Hello” exchanges among neighbors. Each nodev

also selects its priorityP (v, i)1, which is embedded in the
“Hello” messages and disseminated to itsh-hop neighbors.
The priority of a node can be any value that satisfies the
following conditions.

1) P (v, i) ≥ P (v, i− 1) for all i ≥ 1.
2) P (v, i) = P (v, i− 1), if v is unmarked in roundi.

The following theorem shows that the seamless iterative
Rule K “repairs” a CDS in one round. If a topology change
occurs in roundi− 1 and damages the CDS, a new CDS will
be formed in roundi, if no more topology changes occur in
roundi. This “repair rate” is the same as in the original (non-
iterative) Rule K. Note that if the network topology changes
in every round, no traditional local solution can maintain a
CDS. Again, we useVi to denote the set of marked nodes in
round i, and assume the network is connected in each round.

1Here we use a upper caseP to distinguish the monotonically increasing
priority in SILS from the one in CILS.
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Theorem 2 (Correctness):With the seamless iterative Rule
K, Vi is a CDS in roundi if there is no topology change in
the current round.

The next theorem shows that the seamless iterative Rule K
is as effective as the iterative Rule K in a static environment.

Theorem 3 (Progressiveness):With the seamless iterative
Rule K, |Vi| ≥ |Vi+1| ≥ . . . ≥ |Vj | if there is no topology
change in roundsi, i + 1, . . . , j.

Finally we show that the effect of a topology change is
localized. Specifically, when the seamless iterative Rule K uses
h-hop information to determine the status of each node, the
influence of a topology change is within2h hops. We say a
nodev is within h hops of a topology change, if such a change
can be detected byv via collectingh-hop information.

Theorem 4 (Locality):If the seamless iterative Rule K is
stabilized at roundi, then only nodes within2h hops of a
topology change may change their status after roundi.

Note that the dynamic priorityP integrates the treatment of
both the iterative process and topology change in a seamless
way. Figure 3 (b) shows a general pattern of CDS size. Notice
that the CDS can increase as a response to a topology change
(such as a newly switched-on node).

C. A special case

This subsection presents a special case of the seamless
iterative Rule K, which is equivalent to the iterative Rule K
in static networks, and has all the desirable properties of the
seamless iterative Rule K in a dynamic environment. For
each roundi ≥ 1, the new priority of a nodev is a 2-
tuple (s, p), where s is a sequence number, which records
the most recent iteration that a node was marked. A node
with a higher sequence number has a higher priority.p is
a secondary priority to break a tie between two nodes with
the same sequence number. Letp(v, i) be one of the priority
rotation schemes in Section III-A.

P (v, i) =
{

(i− 1, p(v, i)) : v is marked in roundi− 1
P (v, i− 1) : otherwise

(1)
All nodes are considered marked in the first round. There-

fore, when i = 1, the corresponding priority of each node
v is P (v, 1) = (0, p(v, 0)). Any new node (e.g, a node that
switches on in the current round) is also considered marked.
A node v added at the beginning of roundi has the priority
(i− 1, p(v, i)).

Figure 4 illustrates the seamless iterative Rule K using
the priority function (1). In a static network (as shown Fig-
ure 4 (a)), the marking process is stabilized after round 4. At
each iteration, the dynamic Rule K produces the same set of
marked nodes as in the iterative Rule K (as shown in Figure 2).
Note that nodes with priority(i − 1, p) are unmarked after
iteration i. Figure 4 (b) shows a dynamic network where a

(1,2)

(5,7)(0,1)

(5,9) (5,6)(0,4)

(5,2)

(0,3) (5,3) (1,2)

(a) Round 5, no topology change (b) Round 5, node switch−on

(0,1)

(1,4) (3,3)(0,4)

(1,5)

(0,3) (4,8) (4,4) (1,2)

(1,4)

(4,9)

(c) Rounds 5 and 6, node switch−off

(1,4)(0,1)

(1,4) (3,3)(0,4)

(1,5)

(0,3) (4,8) (4,4)

(1,4)(0,1)

(1,4) (3,3)(0,4)

(1,5)

(0,3) (4,8) (1,2)

Fig. 4. A seamless iterative Rule K with 3-hop information. (a) Priority
assignment after the first four rounds of iteration, where the random priority
of each node in each round is the same as in Figure 2. (b) Handling a node
switch-on event in round 5. (c) Handling a node switch-off event in rounds
5 and 6.

new node is added (switches on) right before round 5. After
detecting this topology change, a node with priority (1,5) is
marked in round 5 to maintain a CDS, while the new node with
priority (4,9) is unmarked immediately. Figure 4 (c) shows
the situation of node switch-off. After the topology change
is detected in round 5, four unmarked nodes become marked
to form a CDS. In round 6, all marked nodes adjust their
priority values. A newly marked node with the lowest priority
is unmarked, producing a smaller CDS.

Theorem 5:In a static network, the seamless iterative Rule
K using the priority function (1) produces the same set of
marked nodes as the iterative Rule K at each iteration.

V. SIMULATION

This section presents results from our simulation. All algo-
rithms are implemented on a custom simulator.

A. Static environment

In this subsection, the performance of the proposed iterative
local solution (ILS) is compared with Wu and Li’s Rule1&2
[19], Dai and Wu’s Rule K [6], and the algorithm of Liu,
Pan, and Cao [11] (denoted as LPC). The MCDS algorithm
of Das et al [7] is a global CDS approach, which has an
O(log ∆) approximation ratio in regular graphs, where∆ is
the maximum degree. We use the result of MCDS as a baseline
in the comparison.

To generate a random network,n nodes are randomly placed
in a restricted1000 × 1000 area. The network is modeled as
a unit disk graph with a fixed transmission range of250. The
tunable parameters in this simulation are as follows: (1) The
node numbern, which changes from80 to 150, and (2) the
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Fig. 5. Performance of ILS in a static environment.
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Fig. 6. CDS size at each round in the switched-on/off model (n = 100, k =
10).

iteration number (round number)k. The performance metric is
the number of nodes in the resultant connected dominating set
(CDS). We use the restricted Rule K withh = 2 as a sample
local solution for ISL.

Figure 5 (a) shows the comparison of Rule1&2, Rule
K, LPC, and several implementations of ILS with priorities
of shifting scheme (Shifting), random node value (Random),
perfect shuffle (Shuffle), and MCDS, where the iteration
numberk = 8. We can see that LPC beats non-iterative Rules
1&2 and Rule K, and ILS has even smaller CDS size than
LPC. Among the three node priority approaches, Random has
the best performance. Shuffle is better than Shifting when
the node number is relatively large. We use Random for ILS
in the subsequent analysis. Figure 5 (b) shows the results
of ILS with different iteration numbers (k). We can see
that, with a largerk, the size of resultant CDS is smaller.
But whenk increases to 10, the performance can hardly be
further improved. Therefore, we usek = 10 in the following
simulation.

B. Dynamic environment

The switched-on/off model.CILS and SILS are evaluated
in a WSN environment, where the topology change is solely
caused by node switched-on/off operations. In the switched-
on/off model, only a subset of deployed nodes is active. After
each round, a certain percentage of active nodes switch off and
the same amount of inactive nodes switch on. The simulation
uses 200 deployed nodes with 100 of them active.
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Fig. 7. Analysis with different switched-on/offpercent (n = 100, k = 10).

Figure 6 (a) demonstrates the CDS size at each round of
CILS in a single run of this simulation. Two percentages
of switched-on/off nodes, 0 and 0.01, are used to represent
static and dynamic environments. The result is consistent with
the theoretical analysis. There is little difference whether the
network is static or dynamic. In each cycle, which is 10 rounds
(i.e., k = 10), the CDS size decreases. In the next cycle, all
the working nodes are marked again. Therefore, even there is
no topology change, the CDS size jumps up at the beginning
of each cycle. Figure 6 (b) shows the CDS size at each round
of SILS in a single run. When the network is static, the CDS
size decreases with rounds, achieves minimum at about round
5, and stays there. When the network is dynamic, the CDS
size vibrates with rounds. But since the topology change is
not significant and SILS has better locality, the vibration is
less than that of CILS.

Figure 7 (a) shows the percentage of status changes per
round of SILS and CILS with different switched-on/off per-
centages. A status change is counted whenever a node takes
a different status (from marked to unmarked and vice versa)
from the previous round. The number of simulation rounds is
100. The amount of average change in SILS increases with
the growth of switched-on/off percentage. SILS maintains the
locality property as topology changes and maintains a CDS
at each round. Therefore, the more significant the network
change, the larger number of status changes. CILS always has
a large average status change which increases slightly with
switched-on/off percentage. Figure 7 (b) shows the average
CDS size of CILS and SILS with different switched-on/off
percentages. We can see that when the network topology
does not change or changes slightly, SILS has a smaller
average CDS size than CILS; when the network changes more
significantly, CILS has a smaller average CDS size, because
CILS does not respond to a topology change until another
cycle begins. Thus the CDS size keeps decreasing during a
cycle. Note that the CDS will be broken more often in CILS
in highly dynamic networks.

The random waypoint mobility model. CILS and SILS are
evaluated in a random waypoint mobility model [2], where
each node selects its destination randomly within the deploy-
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Fig. 8. CDS size at each round in the random waypoint model.
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Fig. 9. Analysis with differentpause (n = 100, k = 10).

ment region, and moves with a speed which is uniformly
chosen in(0, Vmax]. When it reaches the destination, the node
pauses for a time periodpause, and then repeats this process.
We set theVmax to be 20. pause is 0 for dynamic and 100
for static, because the simulation lasts 100 rounds.

Figure 8 (a) shows the size of resultant CDS at each round
of CILS, and Figure 8 (b) is that of SILS in a single run.
Similar to the result shown in Figure 6, CILS has the cyclic
vibration regardless of whether the nodes move or not. SILS is
stabilized in round 10 when there is no movement; it vibrates
when there is movement, but the vibration is calmer and the
size of CDS is smaller than that of the first several rounds.

Figure 9 (a) shows the average status changes of CILS and
SILS with differentpause, and Figure 9 (b) shows the average
CDS size of CILS and SILS with differentpause, as a result
of the average of 1000 simulation trials. Similar to the result
shown in Figure 7, the percentage of status changes of SILS
decreases with the decrease ofpause, CILS decreases slightly.
When the mobility level is relatively low, SILS has a smaller
average CDS size than CILS. Under high mobility, CILS has
a smaller average CDS size but the resultant CDSs during the
cycle may be broken.

VI. CONCLUSIONS

This paper provides a general framework for the iterative
local solution. The main contribution is the seamless inte-
gration of the iterative process and the handling of topology
changes in ad hoc wireless networks which include both WSNs
and MANETs. We have considered two extensions to the

iterative local solution to extend its use beyond the static
environment. The work of this paper provides insights on
how to add some new features to a typical local solution
in a dynamic environment. Some assumptions are used to
ease discussion, such as the node ID as priority, synchronized
“Hello” messages, the infinitely increase of sequence number,
and simultaneous topology change. Those assumptions can be
relaxed while preserving various desirable properties.

REFERENCES

[1] K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder. Geometric
spanners for wireless ad hoc networks.IEEE Trans. of Parallel and
Distributed Systems, 14(5):408–421, 2003.

[2] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad
hoc network research.Wireless Communication& Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research,
Trends and Applications, 2(5):483–502, 2002.

[3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris.SPAN: an
energy-efficient coordination algorithm for topology maintenance in ad
hoc wireless networks. InProc. of 7th ACM MOBICOM, 2001.

[4] V. Chvatal. A greedy heuristic for the set-covering problem.Mathemat-
ics of Operation Research, 4(3):233–235, 1979.

[5] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction
to Algorithms. McGraw Hill, 2001.

[6] F. Dai and J. Wu. An extended localized algorithm for connected
dominating set formation in ad hoc wireless networks.IEEE Transaction
on Parallel and Distributed Systems, 15(10):908–920, 2004.

[7] B. Das, R. Sivakumar, and V. Bharghavan. Routing in ad-hoc networks
using a spine. InProc. of IC3N, 1997.

[8] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete
mobile centers. InProc. of Symposium on Computational Geometry,
2001.

[9] D. Simplot-Ryl J. Carle. Energy-efficient area monitoring for sensor
networks. IEEE Computer, 37(2):40–46, 2004.

[10] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set
approximation. InProc. of22nd ACM Int. Symposium on the Principles
of Distributed Computing (PODC), 2003.

[11] H. Liu, Y. Pan, and J. Cao. An improved distributed algorithm for
connected dominating sets in wireless ad hoc networks. InProc. of
International Symposim on Parallel and Distributed Processing and
Applications (ISPA), Lecture Notes in Computer Science, number 3358,
2004.

[12] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J.
Rosenkrantz. Simple heuristics for unit disk graphs.Networks, 25:59–
68, 1995.

[13] I. Stojmenovic. Data gathering and activity scheduling in ad hoc and
sensor networks. InProc. of International Workshop on Theoretical
Aspects of Wireless Ad Hoc, Sensor, and Peer-to-Peer Networks, 2004.

[14] I. Stojmenovic, S. Seddigh, and J. Zunic. Dominating sets and neighbor
elimination based broadcasting algorithms in wireless networks.IEEE
Trans. on Parallel and Distributed Systems, 13(1):14–25, 2002.

[15] H. S. Stone.High-performance computer architecture. Addison-Wesley,
3rd edition, 1993.

[16] J. Sucec and I. Marsic. An efficient distributed network-wide broadcast
algorithm for mobile ad hoc networks. CAIP Technical Report 248,
Rutgers University, 2000.

[17] P. J. Wan, K. Alzoubi, and O. Frieder. Distributed construction of
connected dominating set in wireless ad hoc networks. InProc. of
IEEE INFOCOM’2002, 2002.

[18] J. Wu and F. Dai. A generic distributed broadcast scheme in ad hoc
wireless networks. InProc. of ICDCS’2003, 2003.

[19] J. Wu and H. Li. On calculating connected dominating sets for efficient
routing in ad hoc wireless networks. InProc. of ACM DIALM’99, 1999.

[20] J. Wu and W. Lou. Forward-node-set-based broadcast in clustered
mobile ad hoc networks.Wireless Networks and Mobile Computing,
a Special Issue on Algorithmic, Geometric, Graph, Combinatorial, and
Vector Aspects, 3(2):155–173, 2003.


