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Abstract—In a wireless sensor network (WSN), the sensor
distribution is vital to the quality of service (QoS) of the
network, because the effectiveness of the network depends on the
coverage of the monitoring area. In WSNs where sensors have
locomotion facilities, after the initial deployment, the sensors can
move around and self-redeploy to ensure global coverage and
load balance. The movement-assisted sensor deployment aims at
moving sensors to meet coverage and load balance requirements.
In this paper, we focus on developing a distributed and localized
solution, approximating the global optimal solution [1]. The
proposed local solution has similar performance to the Hun-
garian method, without centralized control. Extensive theoretical
analysis together with simulations has been done to verify the
effectiveness of the proposed distributed solutions.

Index Terms—Hungarian method, load balance, local solution,
sensor deployment, wireless sensor networks.

I. INTRODUCTION

A wireless sensor network (WSN) [2] is a distributed system

for information collection combining sensing, processing, and

communications. The effectiveness of a WSN depends on the

coverage of the monitoring area by the deployed sensors.

Generally, a sufficient number of sensors are used to ensure

the coverage and even a certain degree of redundancy so that

sensors can rotate between active and sleep modes. However,

a good sensor distribution is still needed for coverage and to

balance the workload of sensors. By load balance, we mean

each unit of monitoring area is covered by the same number of

sensors. Recently, equipped with locomotion facilities, sensors

can move around after initial deployment. Thus, WSNs are

now capable of self-deploying to further improve the coverage

and load balance.

In existing works, two methods are used to enhance the sen-

sor coverage: incremental sensor deployment and movement-

assisted sensor deployment. Incremental self-deployment [3]

incrementally deploys sensors, with each one using informa-

tion gathered from previously deployed nodes to determine

its optimal location. This method is developed for robot

This work was supported in part by NSF grants CCR 0329741, CNS
0422762, CNS 0434533, ANI 0073736, EIA 0130806, and CNS 0531410.
Emails: syang1@fau.edu, jie@cse.fau.edu, fdai@ece.ndsu.edu.

applications, and a centralized control is necessary. Movement-

assisted sensor deployment [4] uses a potential-field-based ap-

proach to move existing sensors by treating sensors as virtual

particles, subject to virtual forces. Note that here load balance

implies coverage and hence it is a stronger requirement. To

achieve coverage/load balance, various optimization problems

can be defined to minimize different parameters, including

total moving distance, total number of moves, communica-

tion/computation cost, and convergence rate.

In SMART [5], Wu and Yang related the sensor deployment

in a flat 2-D grid-based mesh to the classic load balance

problem in parallel processing. They proposed a scan-based

solution that does not resort to global (load) information. One

unique issue in WSNs called the communication hole problem

was identified and addressed. In a recent paper [1], they

further proposed an optimal solution for the sensor deployment

issue in 2-D meshes. This solution is based on the classic

Hungarian method, which requires global information, and

achieves optimal total moving distance and number of moves.

In this paper, we focus on the distributed and localized load

balance solutions in WSNs that minimize the total moving

distance of sensors and the number of moves. The basic

monitoring area is still a 2-D grid-based mesh (2-D mesh). We

provide a local solution in 2-D meshes which has approximate

performance compared with the optimal global solution. This

local solution can be extended to solve load balance in

any network topology. Specifically, in this paper, we: (1)

propose a local load balance solution which has approximate

performance compared with the Hungarian method based

optimal solution, (2) conduct theoretical analysis to verify the

effectiveness and limitations of the proposed solution, and (3)

perform extensive simulations to verify its performance.

II. PRELIMINARIES AND RELATED WORK

A. Movement-assisted sensor deployment overview

The sensor placement issue has been widely studied re-

cently [6], [7]. In incremental sensor deployment [3], nodes

are deployed one by one, using the location information of
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Fig. 1. An ideal case for SMART: (a) initial deployment, (b) after row scan,

and (c) after column scan.

previously deployed nodes to deploy the current one. This

centralized algorithm is not scalable and is computationally ex-

pensive. Most existing movement-assisted sensor deployment

protocols rely on the notion of virtual force to move existing

sensors from an initial unbalanced state to a balanced state.

In [8], Zou and Chakrabarty proposed a centralized virtual

force based mobile sensor deployment algorithm (VFA), which

combines the idea of potential field and disk packing [9].

In [10], Wang, Cao, and La Porta used Voronoi diagrams

[11] to find coverage holes in the sensor network, and proposed

algorithms to guide sensor movement toward the coverage

hole. The termination condition of their algorithms is coverage

instead of load balance. In a recent work [12], they proposed

a grid-quorum solution to quickly locate the closest redundant

sensors to the target area, where a sensor failure occurs.

B. SMART: a scan-based approach

The scan-based SMART [5] approach is a hybrid of local

and global. In the n × n 2-D mesh of grids, two scans are

used in sequence: one for all rows, followed by another for

all columns. Within each array, the scan operation, where the

prefix sum of the loads in all grids is passed on from one end

of the array to the other, is used to calculate the average load

and then to determine the amount of overload or underload in

grids. Load is shifted from overloaded grids to underloaded

grids in an optimal way to achieve a balanced state.

The 2-D scan process involves a row scan followed by a

column scan as shown in Figures 1 (b) and 1 (c), respectively.

The result of the 2-D scan process usually does not generate

an ideal global balanced state (as in Figure 1, still one grid is

underload and one is overload). However, the maximum load

difference between any two grids is bounded by 2.

C. The Hungarian method based optimal solution

The Hungarian method is proposed to solve the edge

weighted matching problem in a complete bipartite graph

Km,m with number associated edges called weights. The

objective is to find a perfect matching (of m pairs), such that

the sum of the weights of edges in the matching is maximum

(or minimum).
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Fig. 2. The node and edge weighted bipartite graph of Figure 1 with “give”

grids at the left-hand side and “take” grids at the right-hand side.

To use the Hungarian method for load balance in WSNs,

we need to first convert the 2-D mesh to a complete bipartite

graph. After the global average is achieved, the “give” and

“take” grids appear at the left and right hand sides of the

bipartite graph, respectively. The node weight corresponds to

the amount of overload and underload, and the edge weight

represents the distance between the “give” and “take” grids in

a matching pair as shown in Figure 2 (based on the example in

Figure 1). The edge weight is the distance between two end

nodes M [i, j] and M [i
′
, j

′
]. Then an edge weighted perfect

bipartite graph is derived by expanding each node with weight

k to k “clone” nodes. The edge weight of clone nodes will
be inherited from the original nodes. The Hungarian method

is then applied to this graph and the optimal result is to find

m lines from the m2 dotted lines.

The cost of the Hungarian method for load balance in

WSNs is O(m3) [13], where m is the amount of overloads

(underloads) which is bounded by the number of sensors.

Usually, the number of sensors is one or two magnitudes

higher than the number of grids (n). The solution based on
the Hungarian method is centralized.

III. A LOCAL SOLUTION FOR THE HUNGARIAN

ALGORITHM

In this section, we propose a local solution for the Hun-

garian method. After the states of the grids are decided, the

grids communicate among themselves to determine the load

transferring without the centralized control.

A. Assumptions

The following assumptions are used: (1) The monitoring and

deployment area is an n×n grid, with each grid of size r×r.
In the grid-based 2-D mesh, each grid point at position (i, j)
has four neighbors at positions: (i−1, j), (i, j−1), (i, j +1),
and (i + 1, j). Among existing approaches, TTDD [14] and

GAF [15] use geographic location to partition the network

into a 2-D mesh. (2) Each sensor has position information

and has uniform sensing range
√

2r and two transmission
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Fig. 3. Local Hungarian method: (a) first iteration, (b) second iteration, and

(c) third iteration.

ranges
√

2r (for intra-grid communication) and
√

5r (for inter-
grid communication). (3) The sensor network is sufficiently

dense so that each grid (cluster) has at least one sensor. A

leader (clusterhead) in each grid is selected to coordinate

activities with leaders of its four neighbors, using inter-grid

transmission range. We also assume that each grid knows the

global average load already, and hence its take/give state and

absent/extra loads. The global average could be a predefined

system parameter or achieved by the scan-based approach as

in SMART algorithm. The synchronization of the network

can be achieved by techniques providing micro-second level

synchronization [16].

B. The Local Hungarian Solution in 2-D Meshes

In the local algorithm, each grid in the give state initializes

the matching procedure by sending out an “invite” message

(IM) to its neighbors, including ∆, which is the difference
between its loads and the global average, and a predefined

time-to-live data (TTL) which indicates the transmission range

of this IM. If the grid that gets the IM is not in the take state,

it forwards the IM if the TTL is not expired. A grid in the

take state sends a reply message (RM) back when it gets the

IM as well as forwarding it, and indicates the load it lacks.

When it receives the RM, the give grid sends out some of its

loads to the take grid. When a give state grid sends out a IM,

the TTL of the message is tunable. At first, a small range is

used. If there is no response, the range is increased to search

a larger area for take state grids. This procedure is similar to

the expanding ring search in ad hoc networks. If a take state

grid gets several IMs, it picks the nearest to respond. It may

respond to several give grids in case the donation of any one

of them is not enough. When a give state grid receives several

RMs, it donates its loads according to the order of distance, the

closer having priority. The entire procedure contains several

synchronized iterations to terminate.

Figure 3 shows the first two processing procedures of the

local Hungarian algorithm applied to the example in Figure 1.

(a) shows the difference between the load of each grid and the

global average, ∆+ or ∆− of each grid. The initial TTL is 1,

then it is increased by 1 each iteration. The grids shown by

Local Hungarian Algorithm

(Initialization) Each grid decides its state and the loads under

(∆−) or over (∆+) the average.

• For a give state grid,

1) sends out a IM with TTL=1, including its ∆;
a) If gets RMs, sends out loads according to the

distance order and updates loads state and ∆;
2) If in give state and TTL is smaller than the diameter

of the network, expands TTL and goes to (1);

• For a take state grid,

1) If receives IMs, picks the closest ones to reply;

2) If receives loads, updates its loads state and ∆.
• For a neutral grid,

1) If there is a IM, decreases its TTL; If TTL is not

0, forwards the IM, drops it otherwise.

the bold boxes donate loads in the first iteration, and the grids

with circles are receiving loads. (b) is the resultant network

after iteration 1, and (c) is after iteration 2. After 5 iterations,

all the loads are balanced. For this single example, the total

moving distance of SMART is 63, the Hungarian method is

54, and the local Hungarian method is 56. The number of

moves of SMART is 63, the Hungarian method is 26, and the

local Hungarian algorithm is also 26. Both Hungarian method

and local Hungarian algorithm achieve a complete balanced

state, while SMART does not guarantee it. In addition to its

huge computation consumption, the Hungarian method needs

large storage space, which is O(N 2), where N is the number

of nodes. In the other two method, storage space is O(n2).

C. Discussions

Timer of the give/take state grids. Each give state grid keeps

a timer for IM sending. After an IM is sent out, the timer is set

to 2×TTL. The take grid also set the timer of TTL, in which
IMs of TTL hops away could arrive. When the timer expires,
the take grid makes decision according to all received IMs

and sends back RMs. When the timer of a give grid expires,

it schedules the loads donation according to all received RMs

and sends out loads.

Threshold for state decision. Since the exact global average

load may not be an integer, there needs a threshold δ to

determine states of grids. That is, if the difference between

the loads of the grid and the average is larger than δ, then it is
in the give/take state. When δ is set to 0.5, its smallest value,
the resultant network will be absolutely balanced, where the

difference between any two grids does not exceed 1. However,

this may cause extra large communication overhead.



Expansion speed of search range. When the give state grid

increases its TTL, it has two options, the linear or exponential

expansion. Higher expansion speed needs fewer iterations but

more overheads when take and give grids are close to each

other, that is, the original sensor distribution is relatively

balanced. If local matching is of large possibility in the

network, lower expansion speed can achieve small overhead

since most searches stop at relatively small ranges.

Termination condition. In the previous section, we use “not

in give state or search range larger than the diameter” as the

termination condition of the local algorithm. In fact, after the

algorithm terminates, the system may not achieve the absolute

balance. This is because confliction may occur. This case is

common especially when the search expansion is fast. To

achieve the absolute balance, we can change the termination

condition to “not in give state” and search range stays constant

after it reaches the diameter.

Network topology. The proposed Hungarian method and local

solution can also be applied to topologies other than the mesh

structure. Sensors can be grouped into clusters using any

clustering algorithm. Each cluster is viewed as a grid in the

mesh structure. The only difference is that each cluster may

have up to 6 neighbor clusters in any direction.

IV. PROPERTIES

In this section, we discuss the performance metrics of the

proposed local solution, the approximation ratio of the solution

in terms of the total moving distance.

To calculate the bound of the total moving distance in the

worst case, we have to find the worst case. Figure 4 is the

case we provide for analysis, where circles with + indicate

give state grids and circles with − are take grids. We set d to
be the distance and e is a very small number. We also assume
that ∆ is 1 for every grid. (a) shows the most simple case.

Since the middle two grids have a smaller distance, they may

match to each other in the first iteration, and the other two

grids match. This yields a total moving distance of 4d − 2e.
Obviously, in the optimal way, the first two grids match and the

last two grids match, which leads to a total moving distance of

2d. This lay out can be replicated as in (b). Again, the middle
two grids match to force the first and the last grids match.

Here, the moving distance is 14d−8e while the optimal result
is 4d. We can repeat the replication process as in (c).
If we denote the segment in Figure 4 (a) as the unit segment,

f(k) as the length of segment k, and T (k) as the moving
distance in segment k using the local solution, we have that:

f(k) = 3k+1d − 3k+1 − 1
2

e

The total moving distance in segment k is the moving

distance in the two k − 1 segments without the final move

!+ +

+ + + +
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0: d!ed d
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Fig. 4. Illustration of the worst case lay out. (a) The unit segment, (b)

segment 1, and (c) segment k.

(the first and last grids match), the middle two grids match,

and the first and last grids match. Thus we have that:

T (k) = (2 × 3k+1 − 2k+1)d − (3k+1 − 1)e

The optimal result in segment k is Dopt(k) = 2kd. If we
assume that the number of deployed sensors is N , and they
are deployed according to the worst case scenario, we have

that k = lg N − 2. Thus, the approximation ratio in terms of
the number of sensors is:

R =
T (k)

Dopt(k)
= Θ(

N lg 3

lg N
)

.

This case, which may not be the worst case, shows that there

is no constant bound. Therefore, there is no constant bound

for the total moving distance in the worst case.

However, we conjecture that the local solution does have a

constant probabilistic bound. That is, its expected total moving

distance is a constant times the minimal moving distance in

random sensor networks. A rigorous proof is lacking due to

the complexity of an authentic probabilistic model. Instead we

shed some insights with a simplified model.

In the simplified model, we consider give (take) state grids

with ∆ =1 and call them givers (takers). Assume N givers

and N takers are evenly distributed, such that any square

region of side 2d + 1 contains roughly Nd = (2d + 1)2N/A
givers and Nd takers, where A is the area of the sensor

network. In addition, givers (takers) are densely deployed such

that Nd ≥ 1 in all cases.
In each iteration of the local solution (TTL = d), the

probability that each giver does not receive a reply from a

nearby taker is pd = (1− 1
Nd

)Nd < e−1. When the TTL value

increases from 1 to D, the expected total moving distance is

D∑

d=1

[dN(1 − pd)
d−1∏

i=1

pi] < N
D∑

d=1

d

ed−1
< cN

where c = ( 1
1−e−1 )2. As the minimal total moving distance

is at least N , the average total moving distance of the local
solution is bounded by c times that of the optimal solution.
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Fig. 5. Balance degree with difference iteration number in Local Algorithm

(N = 9000, n = 30).
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Fig. 6. Message cost with difference iteration number in Local Algorithm

(N = 9000, n = 30).

V. SIMULATION

In this section, we present the results of our simulation of

the proposed localized movement-assisted sensor deployment

method (Local), and the comparison with the Hungarian based

optimal method (Hungarian), and the SMART.

A. Simulation environment

All approaches are tested on a custom simulator. We set up

the simulation in a 5, 000×5, 000monitoring area. Sensors can
be deployed in this area following a given distribution, random

distribution (Random) where each sensor randomly selects a

position in the area or clustered distribution (Clustered), where

sensors are deployed to form one or several clustered areas

of different sizes and different clustered degree. The tunable

parameters are: (1) The number of grids n × n. We use 10
and 30 as its values. (2) The number of sensors N . We vary
N from 100 to 1000 and 900 to 9000 in small and large scale

simulations, respectively. (3) The expansion speed of TTL. We

increase TTL at a linear and an exponential speed, respectively.

When using linear rate, we use 1 and 3 as the step value. (4)

The state decision threshold ∆. We vary the value of ∆ from

0.5 to 5 to check the performance of Local.

The performance metrics are (a) deployment quality and

(b) cost. Deployment quality is shown by the balance degree

measured by the standard deviation of sensor numbers in

all the grids, and also the percentage of balanced grids.
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Fig. 7. Percentage of balanced grids with difference iteration number in

Local Algorithm (N = 9000, n = 30).
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Fig. 8. The number of iterations for different ∆ in Local algorithm (N =
9000, n = 30).

Deployment cost is measured in terms of overall moving

distance and also, to a less extent, the number of total moves.

The number of messages sent and the iteration number is also

examined.

B. Simulation results

We first analyze the performance of Local in a large scaled

network, where n is 30 and N is 9000. Figure 5 shows the

balance degree of the network after each iteration, d = 0
represents exponential TTL expansion, and d = 1, 3 are

linear expansion with step 1 and 3. (a) is Random, and (b)

is Clustered distribution with 3 clustered area. We can see

that when the increase of TTL is slower, the more balanced

resultant network is achieved, but it takes more iterations to

get the stable state. When TTL is 1, and the global average

load is an integer, a balanced state can be achieved finally,

where almost every grid has the same loads.

Figure 7 is the percentage of balanced grids after each

iteration. (a) is Random, and (b) is Clustered distribution.

The results are similar with those of Figure 5. The slower

the increase of TTL, the more grids achieve balanced state

finally, but the lower the speed to balance them, especially

in Clustered distribution. We can also see that in most cases,

the match procedure stops before the search range reaches the

maximum value, the parameter of the network. We can see

that in Random distribution, nearly 90% grids are balanced



within 10 iterations.

Figure 6 shows the number of messages sent in the system

after each iteration. We can see that the message cost is

the lowest when d = 1, and the highest when d = 3.
This is because although exponential expansion may cause

lots of messages in each iteration, less iterations are needed

to increase the TTL to cover the whole area. In Random

distribution with TTL=1, each grid sends out less than 6

messages in average.

Figure 8 shows the effect of different ∆ value. We can

see that for linear expansion TTL, the larger the ∆, the less
iterations needed in Random distribution. This decrease in the

number of iterations is not significant in Clustered distribution.

This is because more grids have large ∆+ or ∆−. Although

∆ is large, still a certain number of iterations are necessary

to achieve balance.

Then we compare the performance of Local with Hungarian

and SMART, with d = 1 and∆ = 0.5 in a small scale network
(n = 10). Figure 9 shows the moving distance and the number
of moves in Random and Clustered distributions. We can see

that Hungarian has the smallest moving distance. SMART

has the largest. Although the difference between them is not

large, Local is still better than the other two, since Hungarian

is global and SMART cannot achieve the complete balanced

state. The simulation results of [5] and [1] show that the final

balance degree of the SMART algorithm is around 1 in random

distribution and larger in clustered distribution. The number of

moves of Local is the same with Hungarian, which is smaller

than that of SMART.

Simulation results can be summarized as follows: (1) The

proposed Local algorithm has better performance than the

SMART algorithm in terms of moving distance, the number of

moves, and resultant balance degree. (2) The Local algorithm

has approximate performance with the Hungarian method,

which is a global algorithm and much more energy consuming.

(3) In Local algorithm, different TTL expansion methods

achieve different performance. The slowest linear expansion

method achieves a complete balanced state, but needs more

iterations. In most cases, the matching process stops before

the search range reaches the whole network.

VI. CONCLUSIONS

We present a local solution to the movement-assisted sensor

deployment problem. This solution is implemented using local

network information only. The simulation results show that the

local solution has approximate performance with the optimal

global solution, and is better than the SMART algorithm.
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