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Abstract

In this paper, we address the Topology control with Cooperative Communication

(TCC) problem in ad hoc wireless networks. Cooperative communication is a novel

model introduced recently that allows combining partial messages to decode a complete

message. The objective of the TCC problem is to obtain a strongly-connected topol-

ogy with minimum total energy consumption. We show TCC problem is NP-complete

and design two distributed and localized algorithms to be used by the nodes to set up

their communication ranges. Both algorithms can be applied on top of any symmetric,

strongly-connected topology to reduce total power consumption. The first algorithm

uses a distributed decision process at each node that makes use of only 2-hop neigh-

borhood information. The second algorithm sets up the transmission ranges of nodes

iteratively, over a maximum of six steps, using only 1-hop neighborhood information.

We analyze the performance of our approaches through extensive simulation.
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1 Introduction

Ad hoc wireless networks consist of wireless nodes that can communicate with each other in

the absence of a fixed infrastructure. Wireless nodes are battery powered and therefore have

a limited operational time. Recently, the optimization of the energy utilization of wireless

nodes has received significant attention [9]. Different techniques for power management

have been proposed at all layers of the network protocol stack. Power saving techniques

can generally be classified into two categories: by scheduling the wireless nodes to alternate

between the active and sleep mode, and by adjusting the transmission range of wireless

nodes. In this paper, we deal with the second method.

To support peer-to-peer communication in ad hoc wireless networks, the network con-

nectivity must be maintained at any time. This requires that for each node there must be a

route to reach any other node in the network. Such a network is called strongly-connected.

In this paper, we address the problem of assigning a power level to every node such that the

resulting topology is strongly-connected and the total energy expenditure for achieving the

strong connectivity is minimized.

In order to reduce the energy consumption, we take advantage of a physical layer design

that allows combining partial signals containing the same information to obtain the complete

data. Cooperative communication (CC) models have been introduced recently in [11, 15].

By an effective use of the partial signals, a specific topology can be maintained with less

transmission power.

In this paper, we first present some theoretical results by showing the NP-completeness of

the TCC problem and some relevant bounds. We then propose two distributed and localized

algorithms for the TCC problem, that start from a connected topology assumed to be the

output of a traditional (without using CC) topology control algorithm. One algorithm uses

2-hop neighborhood information where each node tries to reduce overall energy consumption
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within its 2-hop neighborhood without losing connectivity under the CC model. The other

one is based on a 1-hop neighborhood where each node, starting from a minimum range,

iteratively increases its transmission range until all nodes in its 1-hop neighborhood are

connected under the CC model. The initial strongly-connected topology is obtained as

result of applying a traditional topology control algorithm, such as the distributed MST

(DMST) [5] that generates an MST-based topology and the localized MST (LMST) [13]

that generates a pseudo MST-based topology.

The rest of this paper is organized as follows. In section 2, we overview topology control

protocols. Section 3 describes the CC model and the corresponding network model. Also,

we introduce the TCC problem, prove its NP-completeness, and show the performance ratio

between TCC and topology control without CC. In section 4, we propose a distributed and

localized algorithm that can be applied to any symmetric, strongly-connected topology to

reduce the total power consumption. We continue with an iterative approach for setting

nodes transmission ranges in section 5. Section 6 presents the simulation results for the

proposed algorithms, and section 7 concludes this paper.

2 Related Work

Topology control has been addressed previously in literature in various settings. In general,

the energy metric to be optimized (minimized) is the total energy consumption or the max-

imum energy consumption per node. Sometimes topology control is combined with other

objectives, such as to increase the throughput or to meet some specific QoS requirements.

The strongly-connected topology problem with a minimum total energy consumption was

first defined and proved to be NP-complete in [3], where an approximation algorithm with

a performance ratio of 2 for symmetric links is given. In general, topology control protocols

can be classified as: (1) centralized and global vs. distributed and localized; and (2) deter-
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ministic vs. probabilistic. The localized algorithm is a special distributed algorithm, where

the state of a particular node depends only on states of local neighborhood. That is, such

an algorithm has no sequential propagation of states. Comprehensive surveys of topology

control can be found in [14] and [20].

Most protocols are deterministic. The work in [18] is concerned with the problem of

adjusting the node transmission powers so that the resultant topology is connected or bi-

connected, while minimizing the maximum power usage per node. Two optimal, centralized

algorithms, CONNECT and BICONN-AUGMENT, have been proposed for static networks.

They are greedy algorithms, similar to Kruskal’s minimum cost spanning tree algorithm. For

ad hoc wireless networks, two distributed heuristics have been proposed, LINT and LILT.

However, they do not guarantee the network connectivity.

Among distributed and localized protocols, Li et al [12] propose a cone-based algorithm

for topology control. The goal is to minimize total energy consumption while preserving

connectivity. Each node will transmit with the minimum power needed to reach some node

in every cone with degree α. They show that a cone degree α = 5π/6 will suffice to achieve

connectivity. Several optimized solutions of the basic algorithm are also discussed as well as

a beaconing-based protocol for topology maintenance.

Li, Hou and Sha [13] devise another distributed and localized algorithm (LMST) for

topology control starting from a minimum spanning tree. Each node builds its local MST

independently based on the location information of its 1-hop neighbors and only keeps 1-hop

nodes within its local MST as neighbors in the final topology. The algorithm produces a

connected topology with a maximum node degree of 6. An optional phase is provided where

the topology is transformed to one with bidirectional links.

Among probabilistic protocols, the work by Santi et al [19] assumes all nodes operate

with the same transmission range. The goal is to determine a uniform minimum transmission

range in order to achieve connectivity. They use a probabilistic approach to characterize a
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transmission range with lower and upper bounds for the probability of connectivity.

Some variants of the topology control problem have been also proposed by optimizing

other objectives. Hou and Li in [6] present an analytic model to study the relationship

between throughput and adjustable transmission range. The work in [7] puts forward a

distributed and localized algorithm to achieve a reliable high throughput topology by ad-

justing node transmission power. The issue of minimizing energy consumption has not been

addressed in these two papers. Jia, Li and Du [8] are concerned with determining a network

topology that can meet QoS requirements in terms of end-to-end delay and bandwidth. The

optimization criterion is to minimize the maximum power consumption per node. When the

traffic is splittable, an optimal solution is proposed using linear programming.

Our work differs from these approaches by using cooperative communication [11, 15].

We explore this model in minimizing total power consumption while achieving a strongly-

connected topology. A preliminary work on topology control with hitchhiking model is

presented in [2]. In this paper [2], we introduce the Topology Control with Hitchhiking (TCH)

problem and design a distributed and localized algorithm (DTCH) that can be applied on

top of any symmetric, strongly-connected topology to reduce total power consumption.

3 Model and Problem Definition

In this section, we introduce the cooperative communication model and the corresponding

network model. Then, we define the Topology control with Cooperative Communication

(TCC) problem, show its hardness, and show a performance ratio between TCC and topology

control without cooperative communication.
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3.1 Cooperative Communication (CC) Model

Recently, a new class of techniques called cooperative communication (CC) (or cooperation

diversity) has been introduced [11, 15] to allow single antenna devices to take advantage of

the benefits of MIMO systems. Transmitting independent copies of the signal from different

locations results in having the receiver obtain independently faded versions of the signal, thus

reducing the fading effect through multipath propagation. In this communication model,

each wireless node is assumed to transmit data and to act as a cooperative agent, relaying

data from other users. There are wireless network applications proposed in literature that

use the CC model, such as energy efficient broadcasting [1] and constructing a connected

dominating set [21].

CC techniques are classified [11] as amplify-and-forward, decode-and-forward, and selec-

tion relaying. In the amplify-and-forward version, a node that receives a noise version of the

signal can amplify and relay this noisy version. The receiver then combines the information

sent by the sender and relay nodes. In decode-and-forward methods, a relay node must first

decode the signal and then retransmits the detected data. Sometimes the detection of a

relay node is unsuccessful and cooperative communication can detriment the data reception

at the receiver. One method is to have a node decide if it relays its partner’s data based on

the signal-to-noise ratio (SNR) of the received signal. In selection relaying, a node chooses

the strategy with the best performance.

The model considered in this paper belongs to the decode-and-forward category, where

a node makes the relaying decision based on the SNR of the signal received. Such a model

requires each node to have a memory that can store several packet amounts of data and a

signal processor that can estimate the SNR of each received packet. This model, also referred

in literature as the hitchhiking model in [1, 21], takes advantage of the physical layer design

that combines partial signals containing the same information to obtain complete informa-

tion. By effectively using partial signals, a packet can be delivered with less transmission
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power. The concept of combining partial signals using a maximal ratio combiner [16] has

been traditionally used in the physical layer design of wireless systems to increase reliability.

Similar to the model in [1], we consider that messages are packetized. A packet contains

a preamble, a header, and a payload. A preamble is a sequence of predefined uncoded

symbols assigned to facilitate timing acquisition, a header contains the error-control coded

information sequence about the source/destination address and other control flags, and a

payload contains the error-control coded message sequence. We assume that the header and

the payload of a packet are the outputs of two different channel encoders, and that the two

channel codes are used by all the nodes in the system. The separation of a header and a

payload in channel coding enables a receiver to retrieve the information in a header without

decoding the entire packet. The use of the same channel codes enables a receiver to enhance

the SNR at the input to the channel decoder by combining the payloads of multiple packets

containing the same encrypted message.

We consider two parameters [1] related with SNR: γp, which is the threshold needed

to successfully decode the packet payload, and γacq, which is the threshold required for a

successful time acquisition. The system is characterized by γacq < γp. We note with k the

ratio of these two thresholds, k = γacq/γp. We assume that the threshold to successfully

decode a header is less than or equal to the threshold to successful time acquisition γacq.

A packet received with a SNR γ is: (1) fully received, if γp ≤ γ, (2) partially received, if

γacq ≤ γ < γp, and (3) unsuccessfully received, if γ < γacq. Therefore, when a packet is fully

or partially received (γacq ≤ γ), the header information is successfully decoded.

Consider that when a wireless node i transmits a packet, the coverage of a node j that

receives the packet with a SNR per symbol γ is defined as: cij = 1 for β > 1, cij = β

for k < β ≤ 1, and cij = 0 for 0 < β ≤ k, where β = γ/γp. A channel gain is often

modeled as a power of the distance, resulting in β = rα/dα
ij = (r/dij)

α, where α is a

communication medium dependent parameter, r is the communication range of node i, and
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dij is the Euclidean distance between the nodes i and j. For example, consider k = 0.125

and α = 2. Let us assume node i transmits a packet. For a node j with r/dij = 1/2, the

coverage is 0.25, whereas for the case r/dij = 1/3 the coverage is 0. The basic idea in the

CC model is that if the same packet is partially received n times from different neighbors

with γacq ≤ γi < γp for i = 1..n such that
∑n

i=1 γi ≥ γp, then the packet can be combined by

a maximal ratio combiner [16] and can be successfully decoded.

3.2 Network Model

We consider an ad hoc wireless network with n nodes equipped with omnidirectional an-

tennas. The nodes in the network are capable of receiving and combining partial received

packets in accordance with the CC model introduced in section 3.1. We represent the network

by a directed graph G = (V, E), where the vertices set V is the set of nodes corresponding

to the wireless devices in the network and the set of edges E corresponds to the communi-

cation links between devices. Between any two nodes i and j there will be an edge ij if the

transmission from node i is received by the node j with a SNR greater than γacq.

Every node i ∈ V has an associated transmission power level pi = rα. For each edge

ij ∈ E, the coverage provided by node i to node j is defined as cij = 1 for pi/d
α
ij ≥ γp and

cij = pi/(dα
ij×γp) for γacq ≤ pi/d

α
ij < γp. The case pi/d

α
ij < γacq is not included since an edge

will exist only when the SNR of the received signal is at least γacq, that is, pi/d
α
ij ≥ γacq. In

this paper, we consider the cases when α equals 2 and 4, and γp = 1.

3.3 Topology Control with Cooperative Communication (TCC)

In this section, we introduce the Topology control with Cooperative Communication (TCC)

problem. The fully received packet is defined as follows. Considering a transmission from

a node i to a node j, node j is partially (fully) covered by i if 1 > cij ≥ γacq (cij = 1). If,
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Figure 1: A cooperative communication example. (a) Initial power consumption based on
MST. (b) Power consumption with A as source. (c) B is the source. (d) C is the source.

upon combining the packets received from one or more neighbors, say k neighbors, results

in a full coverage of node j, i.e. Σkpk/d
α
kj ≥ 1, then the packet is fully received.

We define strong connectivity under the CC model as follows. For any node s sending

a packet, there should be a “path” to every other node, that is, the packet should be fully

received by all other nodes in the network. The following rules apply: (1) s has the full

packet, and (2) only nodes that fully received the packet are able to forward it, including s.

Each node that has fully received a packet will forward it only once. Now we can formally

define the TCC problem as follows:

TCC Definition. Given an ad hoc wireless network with n nodes and using the CC model,

assign a power level to every node such that: (1) the sum of the power levels in all nodes is

minimized
∑n

i=1 pi = MIN , and (2) the resultant CC-based topology is strongly-connected.

Figure 1 presents a simple example of strong connectivity using the CC model, where

γacq = 0.2. We assume the power required to communicate between two nodes to be the
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square of the distance between them. The number on each edge represents the coverage

provided by the source node to the destination node. In Figure 1 (a), a minimum spanning

tree (MST) is formed among the three nodes, where each bi-directional link corresponds

to two uni-directional links. Each node sets its power to reach its furthest neighbor on the

MST. For example, node B must set its power to 42+62 = 52 to reach node C. The topology

is strongly-connected if, having any node as the source of a message, all the other nodes can

get this message directly or by forwarding. In a model with CC as in Figures 1 (b), (c) and

(d), communication power of a node can be reduced to partially cover some neighbors as

long as several partial messages can be combined for a successful message receipt at those

nodes. Figures 1 (b), (c) and (d) show that starting from each node, all other nodes are fully

covered, thus the resulting topology is strongly connected. For example, in (b), node A has

a power of 18 to fully cover B (32 + 32 = 18), and to 31% cover C (18/(72 + 32) = 31%).

Since B has received the complete message, it can forward the message to C, providing 69%

coverage with the power level set to 52 × 6% = 35.86. Thus C gets the complete message.

Using the same idea, the two other nodes are fully covered if we select node B or C as the

source node. Therefore, the graph is strongly-connected using CC.

3.4 NP-Completeness of the TCC Problem

Kirousis et al [10] gave a formal proof of NP-completeness for the general graph version

of the topology control (GTC) problem, without using CC. In order to prove that TCC is

NP-complete, we show that TCC belongs to the NP-class and GTC is a special case of TCC.

Theorem 1: The TCC problem is NP-complete.

Proof: It is easy to see that TCC belongs to the NP-class. Having assigned a transmission

power for each node in the network, it can be verified in polynomial time whether the

resultant topology is strongly-connected using CC and whether the cost of this assignment

(sum of the powers of each node) is less than a fixed value.
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Next, we show that GTC is a special case of TCC. When γacq = γp, we have no case of

partial reception of signals. Thus the TCC problem reduces to the GTC problem, where a

signal is either fully received or the reception fails. Hence, the GTC problem is a special

case of the TCC problem for γacq = γp.

Because GTC is NP-complete and is a particular case of the TCC problem and because

TCC belongs to the NP-class, we conclude that TCC is an NP-complete problem. 2

3.5 Performance Ratio Between GTC and TCC Problems

In this section, we prove that the optimal solution of the GTC problem has a performance

ratio of 1/k with the optimal solution of the TCC problem, where k is defined in section 3.1.

Theorem 2: The performance ratio between the optimal solution of the GTC problem and

the optimal solution of the TCC problem is upper bounded by 1/k.

Proof: Let us note the optimal solution of the GTC problem with OPT GTC and the optimal

solution of the TCC problem with OPT TCC. It is clear that OPT TCC ≤ OPT GTC since the

solution set of the TCC problem includes that of the GTC problem. Next, we show that

OPT GTC ≤ 1
k
·OPT TCC.

Let us assume there are n nodes in the network, noted with 1, 2, ..., n. Let us note

with r1, r2, ..., rn the node transmission ranges associated with OPT TCC . Then OPT TCC =

rα
1 + rα

2 + ... + rα
n . For a node i, we note with NTCC

i the set of nodes partially or totally

covered by i. Then ∀j ∈ NTCC
i , ( ri

dij
)α ≥ k, where dij is the distance between nodes i and

j. Let us consider now the case when each transmission range is increased k−
1

α times. This

corresponds to a solution SOL with node transmission ranges r′1, r
′

2, ..., r
′

n:

SOL = 1
k
·OPT TCC = (r1 · k

−
1

α )α + ... + (rn · k
−

1

α )α = r
′α
1 + r

′α
2 + ... + r

′α
n

For any node i = 1..n and for any node j ∈ NTCC
i , we have (

r′i
dij

)α = ( ri·k
−

1
α

dij
)α = 1

k
·( ri

dij
)α ≥ 1.
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Table 1: DTCC notations.

G Symmetric, strongly-connected starting topology
fi 1 if node i decided its final power, otherwise 0
pi Transmission power level of node i
N(i) Set of 1-hop neighbors of node i in G
P (i) Set of transmission power levels of node i
gi(p) Gain of node i at power level p
dij Distance between nodes i and j

Therefore, all nodes that were previously partially covered in the TCC solution are now fully

covered and the strong connectivity is preserved. Therefore, SOL is also a solution of the

GTC problem, with OPT GTC ≤ SOL. This results in OPT GTC ≤ 1
k
·OPT TCC.

To summarize, we have proved that OPT TCC ≤ OPT GTC ≤ 1
k
· OPT TCC, therefore,

OPT GTC

OPT TCC ≤ 1/k. 2

4 Distributed Topology Control using the Cooperative

Communication (DTCC) Algorithm

In this section, we propose the distributed topology control using the cooperative com-

munication (DTCC) algorithm that can be applied to any symmetric, strongly-connected

topology to reduce the total power consumption. Any node decides its final power based

only on local information from its 2-hop neighborhood. To be distributed and localized are

important characteristics of an algorithm in ad hoc wireless networks, since it adapts better

to a dynamic and scalable architecture.
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4.1 Basic Ideas

In describing the algorithm, we use the notations in Table 1. Each node independently

“locks” its 1-hop neighborhood to perform power adjustment to save energy. We take node

i as the current node for the example in Figure 2. All the nodes on the inner dashed circle

including j are i’s 1-hop neighbors. The nodes on the outer dashed circle, such as k and l,

are i’s 2-hop neighbors. The main idea of DTCC is to increase i’s power level to “contribute”

to the coverage of its 2-hop neighbors so the range of i’s 1-hop neighbors can be reduced,

and at the same time the overall power consumption can be reduced. To ensure connectivity,

1-hop neighbors should still be able to reach i directly. Such a process is the 2-hop power

reduction process. In fact, in the 2-hop power reduction process, i and its 1-hop neighbors

are involved in an “atomic action”. To implement such an atomic action, two approaches

can be used:

1. Back-off scheme. After node i has selected a new power level, it backs off a period of

time inversely proportional to its calculated gain. The gain of node i represents the

maximum decrease in the total power obtained by adjusting the power of node i to

one of the predefined values in P (i). This will give priority to the nodes with higher

gain to set up their final power first. If node i receives an update during this interval,

then it recomputes its power level and back-off again. If the timer expires without any

updates, then node i considers this power level as its final power, and announces this

power level together with its neighbors’ new power levels to the nodes within its 2-hop

neighborhood.

2. Locking scheme. Node i needs to securely lock of all its neighbors (in addition to its own

lock). Once i completes its power reduction process, it releases its lock and the locks

of its neighbors, and announces the power levels of itself and its neighbors to the nodes

within its 2-hop neighborhood. Unlike the back-off scheme that may exhibit occasional

mis-coordination, the locking scheme guarantees that nodes execute the 2-hop power
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Figure 2: Illustration of 2-hop neighbor set of i.

reduction process without conflict. However, it is more expensive.

4.2 Detailed DTCC Algorithm

The DTCC algorithm starts from a symmetric (bi-directional links), connected topology G,

assumed to be the output of a traditional topology control algorithm. Two such algorithms,

DMST and LMST, are addressed later in this section. Initially, each node i sets its power

pi to the value p0
i needed to reach its furthest 1-hop neighbor in G.

We assume that each node i has all the distance information within its 2-hop neighbor-

hood and the pj values of all 1-hop neighbors. Note that this kind of information is usually

available after the traditional topology control algorithm completes. Node i maintains pj

values for all its 1-hop neighbors. Whenever pj for a node j changes, node j broadcasts this

change to its neighbors.

The goal of the DTCC algorithm, by starting from an initial power p0
i , is to decide the

final power assignment by using the CC model such as to minimize the total power. Next,

we describe the mechanism used by each node in order to decide its final power level.

The gain of node i is computed in ComputeGain(i). The gain gi(p) is defined as the

maximum decrease in the total power, obtained by increasing node i’s transmission power

level to p ∈ P (i), in exchange for a decrease of the power levels of some of the node i’s
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neighbors. This is because when the power level of node i is increased, i provides partial or

full coverage to more nodes in the network. For example, if k is a 1-hop neighbor of node j,

where j ∈ N(i) (see Figure 2), then an increase in the partial or full coverage of node k may

facilitate reduction of the power level of node j that can provide less coverage to node k.

Each node i maintains a variable fi initially set to 0, meaning that this node has not yet

decided its final power level. In order to decide its final power, node i computes the gain

for various power levels and selects the power level for which the gain is maximum. The

power levels in P (i) are those power levels for which node i could reduce the power level of

a neighbor j to dα
ij, by providing the additional coverage needed for a full coverage of all the

neighbors of j.

The process of computing the gain is performed for each power level p ∈ P (i). Once

the gains for all power levels in P (i) are determined, the node selects the power level that

produces a maximum gain, noted with pnew
i . If there is no power level p such that gi(p) > 0,

then pi will not change. When node i announces its new power level through Broadcast(), all

its neighbors j with fj 6= 1 will invoke Reduce() to decrease their power levels and broadcast

the change, as a result of the additional coverage provided by node i.

The pseudocode presented next uses a back-off scheme (see section 4.1) in order to im-

plement the 2-hop power reduction process as an atomic action. Each node i backs-off a

time inversely proportional to its calculated gain before deciding its final power. If, during

the back-off interval, node i receives a broadcast from a neighbor j, then node i first update

its power pi and then continues the back-off scheme.

Algorithm DTCC(i)

1: pi ← p0
i

2: fi ← 0
3: while fi = 0 do
4: compute P (i)
5: ComputeGain(i)
6: pnew

i ← power level for which gain is maximum
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7: start a timer t← 1
gi(pnew

i )

8: if broadcast message received from j before t expires then
9: pi ← Reduce(j, pj , i)

10: else
11: pi ← pnew

i

12: fi ← 1
13: end if
14: Broadcast(i, pi, fi)
15: end while

ComputeGain (i)

1: /*Find gain for all power levels in P (i)*/
2: for all p ∈ P (i) do
3: for all j ∈ N(i) do
4: pred

j ← Reduce (i, p, j)
5: end for
6: gi(p)←

∑
j∈N(i)(pj − pred

j )− (p− pi)
7: end for

Reduce (i, p, j)

1: /*Reduce the power of node j on the basis of partial coverage provided by node i with
power p */

2: if fj = 1 then
3: return pj

4: end if
5: for all k ∈ N(j) do
6: pj(k)← (1− cik)× dα

jk

7: end for
8: return max{dα

ij , maxk∈N(j) pj(k)}

4.3 Properties

The complexity of the DTCC algorithm run by each node i is polynomial in the total number

of nodes n. The complexity of the ComputeGain(i) procedure takes O(|P (i)| × |∆|2) time,

where ∆ is the maximal node degree. This is because for each neighbor j ∈ N(i), the i′s

coverage on each 2-hop neighbor k ∈ N(j) needs to be computed. This process has to

be done for each power level in P (i). When |P (i)| = O(∆), it is O(∆3). Therefore, the

complexity of the algorithm DTCC run on each node is O(∆4) with another loop.
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Next, we show the correctness of the DTCC algorithm:

Theorem 3: The power level assignment provided by the DTCC algorithm guarantees a

strongly-connected topology with the CC model.

Proof: Initially, each node is assigned the power level needed to reach the furthest 1-hop

neighbor in G. The starting topology G is strongly-connected, that is, between any two

nodes there exists a path. We note that there are two cases when a node’s power level may

change in the DTCC algorithm: (a) in line 11, but here the value is increased, so this will

not affect connectivity, and (b) in line 6 of the procedure Reduce(), when a node’s power

level may be reduced.

Let us assume by contradiction that after applying the DTCC algorithm, the strong

connectivity is not preserved. Then, there exist two nodes i and j such that when the node

i is sending a packet, this packet is not fully received by j. The nodes i and j are connected

in G, so there exists a path i0 = i, i1, ..., im = j between i and j. We show by induction

that im fully receives the packet sent by i0.

First, i0 has the full packet. If i0 did not change its power or has increased the power

level, then i1 is fully covered by i0 and therefore receives the full packet from i0. Let us

consider the case when i0 has reduced its power level. Then, in conformity with DTCC, the

current power of i0 was updated when one of its neighbors, say k, has set up its final power.

In that case, i0 fully covers k and i0 together with k fully cover all i0’s neighbors, including

i1. So i1 also fully receives the packet. Applying the same mechanism, we can show that

any node on the path fully receives the packet sent by its predecessor, even if it is not fully

covered by its predecessor. Thus, node im fully receives the packet, contradicting our initial

assumption that strong connectivity is not maintained after running DTCC. 2
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4.4 Two Special Cases

We have applied the DTCC algorithm on two starting topologies output by two distributed

algorithms: DMST (Distributed MST) and LMST (Localized MST). We note with DMST

the Gallegar’s distributed algorithm [5] for constructing an MST, and with DMST-based

DTCC the DTCC algorithm that starts from a topology G generated by DMST. Also, we

note with LMST the algorithm proposed by Li et al [13] for constructing a pesudo MST,

and with LMST-based DTCC the DTCC algorithm that starts from a topology G generated

by LMST.

MST has been considered before as a reference point in designing topology control mech-

anisms in the general model (without CC) because of its important properties and good

performance. MST has the minimum longest edge among all the spanning trees [4], there-

fore, if every node has assigned a power level needed to reach the furthest neighbor then the

maximum power assigned per node is minimized for the MST compared with other spanning

trees. This property results in maximizing the time until the first node will deplete its power

resources. Another property of the MST-based topology in the general case (without CC) is

that it provides an approximation algorithm with a performance ratio of 2 [10].

Next, we prove that an MST-based topology has a performance ratio of 2/k for the TCC

problem. An MST-based topology is a mechanism that builds an MST over all n nodes in

the network and then assigns to any node the power needed to reach the furthest neighbor

in the MST.

Theorem 4: An MST-based topology is an approximation algorithm with ratio bound of

2/k for the TCC problem, where k = γacq/γp is a constant k ∈ (0, 1], and represents a

characteristic of the wireless communication medium.

Proof: Let us note the optimal solution of the GTC problem with OPT GTC, the optimal

solution of the TCC problem with OPT TCC, and the MST-based solution with MST .
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It is proved in [10] that an MST-based topology has a performance ratio of 2 for the

GTC problem, therefore MST ≤ 2 · OPT GTC. In Theorem 2, we proved that OPT GTC ≤

1
k
· OPT TCC, therefore, MST ≤ 2

k
· OPT TCC. Since OPT TCC ≤ MST , we obtain that

OPT TCC ≤MST ≤ 2
k
·OPT TCC and thus the theorem holds. 2

Since DMST-based DTCC starts from an MST-based topology and improves it, using

the CC advantage, DMST-based DTCC will also have a performance ratio of 2/k for the

TCC problem.

As DTCC and LMST are localized, the resultant LMST-based DTCC is localized. How-

ever, LMST-based DTCC does not guarantee a performance ratio since LMST is not strictly

MST-based topology. We present the simulation results for LMST-based DTCC in section

6. Note that if the DTCC is applied on LMST, the complexity is O(1). This is because in

LMST, the degree of any node in the resulting topology is bounded by 6 [13]. Therefore,

the power level of node i, |P (i)|, is constant in DTCC. The complexity of DTCC in general

case is O(|P (i)| × |N(i)|2), which is O(1) here.

Figure 3 shows an example of a six nodes topology. The number on each node indicates

the power level used by that node in maintaining the topology based on (a) DMST and (b)

LMST. We use unidirectional links to represent full coverage in both directions, whereas

directional links with values less than 1 indicate the amount of partial coverage.

In Figure 3 (a) we present a DMST-based topology without CC. The power level assigned

to each node is the power needed to reach the furthest neighbor in DMST. The total cost

is 186. In Figure 3 (b), we show the topology obtained after using the LMST algorithm

[13], with a total cost of 287. LMST uses a localized way to generate the MST where every

node decides its 1-hop neighbors independently. Therefore, in a global view, the resulting

topology might be a graph with cycles.

Figure 3 (c) shows the topology and power assignment after running the DMST-based

DTCC algorithm. We assume γacq = 0.01 and α = 2. First, each node computes its gain.
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Figure 3: Example of DTCC (γacq = 0.01, α = 2). (a) DMST and power consumption. (b)
LMST and power consumption. (c) DMST-based DTCC. (d) LMST-based DTCC.

As node F has the largest gain, it increases its power to 34.56, and thus nodes A and C

decrease their power to 1 and 34.23, respectively. In the second round, node B sets its power

to 4 and node E decreases its power to 61.94. We obtain a total cost of 160.73, and a 13.59%

power reduction compared with the output of the DMST algorithm in Figure 3 (a). Strong

connectivity is also preserved. For example, node A reduces its power to 1, which partially

covers its neighbor D with 0.04, while node T provides the additional 0.96 coverage. Thus,

a message sent from A is fully received by F , and then A and F can together cover D.

Figure 3 (d) shows the execution of the LMST-based DTCC algorithm with a total cost

of 206.1 and a reduction ratio of 28.19% compared with LMST algorithm in Figure 3 (b).
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Table 2: ITCC notations.

G Symmetric, strongly-connected starting topology
fi 1 if node i decided its final power, otherwise 0
pi Transmission power level of node i
pmax

i Transmission power of node i needed to reach fur-
thest neighbor in N(i)

pmin
i Transmission power of node i needed to reach clos-

est neighbor in N(i)
N(i) Set of 1-hop neighbors of node i in G
N ′(i) Set of 1-hop reachable neighbors using CC

5 Incremental Topology Control using Cooperative Com-

munication (ITCC) Algorithm

In this section, we propose a distributed and localized algorithm that uses a different ap-

proach to set up nodes’ transmission power. The Incremental Topology control using Co-

operative Communication (ITCC) algorithm is based on 1-hop neighborhood information.

Each node, starting from a minimum power, iteratively increases its transmission power until

all the nodes in its 1-hop neighborhood are fully covered under the CC model.

5.1 Basic Ideas

The main algorithm notations are introduced in the Table 2. ITCC algorithm starts from a

symmetric, connected topology G, assumed to be the output of a traditional topology control

algorithm such as DMST and LMST. Each node i computes pmax
i and pmin

i , the transmission

powers needed to reach the furthest and the closest neighbor in N(i), corresponding to G.

The final power selected by node i is a value between pmin
i and pmax

i . The goal of this

algorithm is to find a minimum transmission power for node i in [pmin
i , pmax

i ], such that all

the nodes in N(i) are fully covered by node i using CC. In the CC model, if a node v fully

receives a message transmitted by a node u (directly or using CC), then v will resend the

21



message once using its current power level.

The ITCC algorithm adopts an iterative process where each node gradually increases its

power (initially pmin
i ). To avoid simultaneous updates among neighbors, either a back-off or

a locking scheme can be used (see section 4.1).

5.2 Detailed ITCC Algorithm

We assume that each node i has the distance and location information for its 1-hop neigh-

borhood N(i), information usually available after running the traditional topology control

algorithm. Each node i maintains its current power estimate, pi and the pj value for each

node j ∈ N(i). When a node decides its final power value, it sets fi to 1.

The goal of the ITCC algorithm is, by starting from an initial power pmin
i needed to reach

the closest 1-hop neighbor for each node i, to iteratively increment the power until all nodes

in N(i) are fully covered using the CC model. When this condition is met, node i declares

its current power estimate as its final power assignment. Next, we describe the mechanism

used by each node i to decide its final power level.

Each node i maintains a variable fi which is initially set to 0, meaning that this node

has not yet decided its final power level. The algorithm executes in at most |N(i)| rounds

(or iterations). In each round, power level pi is minimally incremented with ∆pi such that

at least one node in N(i)−N ′(i) is added to N ′(i). ∆pi can easily be computed since node i

maintains the distance and location information for all nodes in N(i). The algorithm finishes

when N(i) = N ′(i), that is using the current power estimate pi, node i covers all nodes in

N(i) using the CC model.

All broadcast messages sent to advertise new power level updates are sent with power

level pmax
i . If, during the back-off interval, a broadcast message is received from a neighbor

in N(i), then N ′(i) and ∆pi are updated before continuing the back-off waiting. It might
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happen that the value ∆pi decreases, but this is safe since node i did not advertise the new

power level yet. When the time comes for node i to broadcast its advertisement, it updates

its power level pi ← pi + ∆pi and the reachable neighborhood set N ′(i). If N(i) = N ′(i),

then the current power level is the final power level of node i.

The rounds should be designed to have each node advertise its new power estimate

once. Ideally, the nodes will send the broadcast without colliding with their neighbors’

advertising. To avoid collisions, we could use a 1-hop neighborhood locking scheme or a

back-off mechanism (see section 4.1). The pseudocode presented next uses a back-off scheme,

where each node backs-off a time inversely proportional to its calculated gain before sending

a broadcast. The gain can be computed for example as pmax
i − (pi + ∆pi). In this case,

nodes with a smaller power level will advertise earlier, thus helping through CC the nodes

with a higher transmission power. This scheme could help to balance power consumption. If,

during the back-off time interval, node i receives an advertisement from a neighbor j ∈ N(i),

then node i does first the update and then continues the back-off scheme.

Algorithm ITCC(i)

1: pi ← pmin
i

2: fi ← 0
3: Broadcast(i, pi, fi)
4: while fi = 0 do
5: compute ∆pi, the minimum incremental power needed to cover at least one neighbor

in N(i)−N ′(i)
6: start timer t
7: if broadcast message received from j before t expires then
8: update N ′(i), ∆pi

9: if N(i) = N ′(i) then
10: fi ← 1
11: Broadcast(i, pi, fi)
12: return
13: end if
14: end if
15: if timer t expires then
16: pi ← pi + ∆pi

17: update N ′(i)
18: if N(i) = N ′(i) then
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19: fi ← 1
20: end if
21: Broadcast(i, pi, fi)
22: end if
23: end while

5.3 Properties

The complexity of the DTCC algorithm run by each node i is polynomial in the total

number of nodes n. Let us note ∆ the maximal node degree in the graph G, that is,

∆ = maxi=1...n |Ni|. The complexity of DTCC is O(∆4). This is because for a node i, there

are at most ∆ rounds, the time to update ∆pi is at most ∆2, and during the back-off at

most ∆ neighbor updates can be received.

When a node i finishes executing ITCC algorithm, it decides its final transmission range

pi. Using this transmission range, the algorithm assures that node i fully covers all the nodes

in N(i), using the CC model. The coverage relationship is transitive. For any three nodes p,

q and r, if p fully covers q and q fully covers r, then p fully covers r as well. Next, we show

the correctness of the ITCC algorithm:

Theorem 5: The power level assignment provided by the ITCC algorithm guarantees a

strongly-connected topology with the CC model.

Proof: Let us assume by contradiction that the resulting topology is not strongly connected,

that is, there exist two nodes i and j such that a message sent by node i is not fully received

by the node j, using CC.

Note that G is strongly connected, that means there is a path in G from i to j, i0 =

i, i1, i2, . . . , im = j, such that ik+1 ∈ N(k) for any k = 0 . . .m − 1. When algorithm ITCC

ends, each node i fully covers all nodes in N(i) using the CC model. Therefore, each node

ik on the path fully covers the successor node ik+1, for k = 0 . . .m − 1. Since the coverage
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relationship is transitive, it follows that i = i0 fully covers j = im using the CC model. Thus,

our assumption is false, and the topology resulted after applying ITCC algorithm is strongly

connected. 2

ITCC algorithm differs from the DTCC algorithm (see section 4) in the following aspects:

• DTCC uses 2-hop neighborhood information, while ITCC uses 1-hop neighborhood

information.

• DTCC starts from the power needed to reach the furthest 1-hop neighbor and increases

this value in order to reduce the power needed by its children. ITCC starts from the

power needed to reach the closest 1-hop neighbor and increases this value incrementally

until its 1-hop neighborhood is fully covered.

• DTCC is executed in one round, while ITCC executes over at most ∆ rounds.

5.4 Two Special Cases

We have applied the ITCC algorithm to two starting topologies, DMST (Distributed MST)

and LMST (Localized MST).

First, we apply the ITCC algorithm to the topology G generated by DMST and note

this algorithm with DMST-based ITCC. Since DMST-based ITCC starts from a MST-based

topology and improves it, using the CC model, DMST-based ITCC has a performance ratio

of 2/k for the TCC problem (see Theorem 4 in section 4.4).

Then, we apply the ITCC algorithm to the topology G generated by LMST and name this

algorithm LMST-based ITCC. LMST-based ITCC is a distributed and localized algorithm

since both LMST and ITCC are distributed and localized. Another important observation

is that the degree of any node in the resulting topology G is bounded by 6 [13]. Therefore,

each node i has |Ni| ≤ 6, and thus ∆ ≤ 6. The complexity of the LMST-based ITCC is
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Figure 4: Example of ITCC (γacq = 0.01, α = 2). (a) DMST and power consumption. (b)
LMST and power consumption. (c) DMST-based ITCC. (d) LMST-based ITCC.

therefore O(1).

We use the same example as in Figure 3 to show how ITCC algorithm works. Figure 4 (a)

is the initial power assignment of DMST-based ITCC. The graph is disconnected with this

power assignment (shown in solid lines), since each node can only reach its closest neighbor.

Each node then increases its power until every neighbor is covered. Figure 4 (c) is the

result. For example, initially, node F 100% covers its neighbor A and 50% covers neighbor

C. It then increases its power to 1.6 to 80% cover C, because the fully covered neighbor A

contributes additional 20% coverage. The final total power obtained is 180.

Figure 4 (b) is the initial power assignment of LMST-based ITCC and Figure 4 (d) is

the resultant power assignment. The final total cost obtained is 214.11.
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6 Simulation Results

In this section, we evaluate the DMST-based DTCC, LMST-based DTCC, DMST-based

ITCC, and LMST-based ITCC algorithms for topologies up to 1000 nodes. We set up our

simulation in a 100×100m2 area. The nodes are randomly distributed in the field and remain

stationary once deployed. We use both DMST and LMST algorithms in the simulation to

generate the starting topologies and to calculate the initial power assignment. Since a

localized algorithm lacks global information, the topology obtained when running LMST

will be less efficient than DMST, that is the power consumption with LMST will be greater

than that using DMST. In the simulation, we consider the following tunable parameters:

1. The node density. We change the number of deployed nodes from 100 to 1000 to check

the effect of node density on the performance.

2. The index exponent α, which shows the relation between distance and power consump-

tion. We use the values 2 and 4.

3. The parameter γacq, which depends on actual wireless communication. In the simula-

tion we use the values 0.0001, 0.1, and 0.2.

Figures 5 (a) and (b) show power consumption depending on the number of nodes, when

α is 2. Figure 5 (a) illustrates DMST and DMST-based DTCC, and (b) LMST and LMST-

based DTCC. We observe that the overall power consumption can be greatly reduced by using

the DTCC algorithm. The smaller the γacq, the better the performance. Power consumed

by DMST is less than that consumed by LMST. The node density does not have much effect

on the power consumption, especially when there are more than 200 nodes. This is because

when there are more nodes, the average distance between nodes is smaller, and so is the

average communication power. Therefore, the overall power consumption changes slightly.
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(d) LMST and DTCC when α = 4

Figure 5: Power consumption of DTCC with DMST and LMST (γacq ∈ {0.0001, 0.1, 0.2}).

Figures 5 (c) and (d) show the power consumption depending on the number of nodes

when α is 4. We can see that the advantage in power efficiency when using DTCC still holds.

The difference between power consumption of these two algorithms is less distinctive.

Figure 6 shows the reduced ratio of the consumed power. Figure 6 (a) shows DMST-

based DTCC for α = 2, and (c) when α = 4. Figure 6 (b) represents LMST-based DTCC for

α = 2, and (d) when α = 4. We observe that LMST-based DTCC with an α of 2 achieves the

highest reduction in the power consumption, which can be up to 18.6%, while DMST-based

DTCC with an α of 4 has the least power reduction.
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Figure 6: Reduced ratio of DTCC with DMST and LMST (γacq ∈ {0.0001, 0.1, 0.2}).

Figures 7 and 8 are the simulation results of ITCC. Figure 7 shows the analysis of power

consumption of DMST-based ITCC, LMST-based ITCC, with different α. We can see that

this figure is quite the same with Figure 5, except that when α is 2, the effect of parameter

γacq is more significant. Figure 8 shows the reduced ratio of power consumption in ITCC

with different γacq. When α is 2, the LMST-based ITCC can save more than 21.5% of its

energy.

Figure 9 compares the power reduction ratio between DTCC and ITCC. When α = 2

and γacq is relatively small (say smaller than 0.1), ITCC outperforms DTCC. Otherwise,

DTCC achieves more power reduction than ITCC. In general, DTCC achieves more energy

savings than ITCC since in DTCC the nodes increase their transmission range only once
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Figure 7: Power consumption of ITCC with DMST and LMST (γacq ∈ {0.0001, 0.1, 0.2}).

with a large increment, and therefore the CC contribution on their neighbors is higher. But

the difference between these two algorithms is slight.

Maximum energy consumption among all the nodes is an important performance metric.

It shows whether the energy consumption among all the nodes is balanced or not. Table 3

shows the reduction ratio of ITCC and DTCC in maximum transmission power taken over

all the nodes in the network. We can see that the greater the parameter α, the smaller

the ratio, and the smaller the γacq, the greater the ratio. The difference between DTCC

and ITCC is slight, but ITCC has a relatively greater reduction. The maximum energy in

ITCC is always smaller or equal to the one in the original DMST/LMST topology, while

the maximum energy in DTCC can be greater than the original one. This is because ITCC
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Figure 8: Reduced ratio of ITCC with DMST and LMST (γacq ∈ {0.0001, 0.1, 0.2}).

increases the node transmission range gradually and the upper bound of its power is to reach

its furthest neighbor. However, in DTCC, a node may increase its power greatly if this can

lead to greater reduction of the power of its neighbors. Thus, using ITCC provides a more

balanced energy consumption per node, resulting in a longer network lifetime. In general,

LMST-based DTCC/ITCC has greater reduction ratio than DMST-based ones.

Simulation results can be summarized as follows:

1. Using the CC model, the proposed DTCC and ITCC algorithms reduce the nodes’

energy consumption in topology control by 7% to 21%. The LMST-based DTCC or

ITCC has greater energy reduction than DMST-based ones.
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Figure 9: Reduced ratio comparison of DTCC and ITCC with DMST and LMST (γacq ∈
{0.0001, 0.1, 0.2}).

2. With α = 2, DTCC and ITCC achieve better performance than with α = 4. The

former is around 17%, and the latter around 9%.

3. The energy reduction ratio is not sensitive to the parameter γacq when γacq is very

small; there is no difference between 0 and 0.0001 of γacq’s value. With increasing

values of γacq, the energy reduction ratio will reduce slightly.

4. The energy savings produced by DTCC and ITCC are comparable, with DTCC pro-

ducing slightly better results in general. But ITCC has a smaller maximum node power

which is good for balanced energy consumption.
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Table 3: Reduction ratio of maximum transmission power among all nodes.

DMST-based α = 2 α = 4
γacq 0.0001 0.1 0.2 0.0001 0.1 0.2

DTCC 0.004 0.003 0.001 0.0005 0.0003 0.000006
ITCC 0.024 0.015 0.009 0.001 0.0004 0.00002

LMST-based α = 2 α = 4
γacq 0.0001 0.1 0.2 0.0001 0.1 0.2

DTCC 0.042 0.031 0.006 0.008 0.002 0.00003
ITCC 0.064 0.045 0.011 0.009 0.004 0.0002

7 Conclusions

In this paper, we have addressed the NP-complete problem on Topology Control with Coop-

erative Communication (TCC) in ad hoc wireless networks, with the objective of minimizing

the total energy consumption while obtaining a strongly-connected topology. Power control

impacts energy usage in wireless communication with an effect on battery lifetime, which

is a limited resource in many wireless applications. We have proposed two distributed and

localized algorithms that can be applied to any symmetric, strongly-connected topology in

order to reduce the total power consumption. The first one uses a distributed decision pro-

cess at each node that makes use of only 2-hop neighborhood information. The second uses

the cooperative communication of nodes within a 1-hop neighborhood in order to set nodes’

transmission ranges iteratively, in at most six rounds. We have analyzed the performance of

our algorithms through simulations. Our future work is, by starting from DTCC or ITCC

algorithm, to design an efficient topology maintenance mechanism that effectively adapts to

a dynamic and mobile wireless environment.
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