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Abstract

In this paper, we propose a general framework of the iterative local solution (ILS) for com-

puting a connected dominating set (CDS) in ad hoc wireless networks, which include mobile ad

hoc networks (MANETs) and wireless sensor networks (WSNs). This approach uses an iterative

application of a selected local solution. Each application of the local solution enhances the result

obtained from the previous iteration, but each is based on a different node priority scheme. Then,

we integrate this iterative process into the process for handling a dynamic network topology and

propose two extensions: cyclic iterative local solution (CILS) and seamless iterative local solu-

tion (SILS). CILS offers a natural extension of ILS to the dynamic environment, but suffers from

a broken CDS and non-adaptiveness. With a novel use of a monotonically increasing sequence

number for dynamic node priority, SILS offers an extension with the desirable properties of cor-

rectness, progressiveness, locality, and seamlessness. Extensive simulations are conducted under

ns-2 and a custom simulator to evaluate the effectiveness of the proposed approach in both static

and dynamic environments.

Keywords: Connected dominating set (CDS), dynamic node priority, local solution, mobile ad

hoc networks (MANETs), simulation, wireless sensor networks (WSNs).

1 Introduction

In ad hoc wireless networks, which include mobile ad hoc networks (MANETs) and wireless sensor

networks (WSNs), various algorithmic solutions can be classified into global, quasi-global, quasi-

local, and local [36] depending on the amount of information used by each node to determine a solu-

tion for a specific problem (e.g., connected dominating set (CDS) as a virtual backbone in MANETS

[35] and for coverage in WSNs [8], and network topology control for saving energy and reducing

signal interference in MANETs [9]). The local approach uses local information to determine node

status and such status does not propagate; i.e., the status of each node does not depend on the status of

its neighbors. Therefore, the local approach is the most desirable to support scalable design through

localized maintenance in a dynamic environment (also called locality). In the construction of a CDS,

the status of a node is either inside or outside the selected CDS; whereas in network topology control,

the status of each node is the selected transmission range for the node.

One potential problem of local solutions is relatively low efficiency (i.e., the quality of results). In

CDS construction the quality is measured by the size of the CDS, and in topology control the quality
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is quantified by the transmission range subject to connectivity. In this paper, we present a general

framework of the iterative local solution (ILS) that relaxes the non-propagation constraint of local

solutions in order to improve efficiency. Each application of a selected local solution enhances the

result obtained from the previous iteration, but based on a different node priority scheme. However,

ILS still keeps locality; that is, ILS can quickly provide a solution after a network topology change.

Figure 1 shows the difference between global, local, and iterative local solutions where time is

slotted into rounds, each of which is a square block. Each round is measured as one or more ”Hello”

message exchanges in ad hoc wireless networks. To simplify the discussion, local solutions take one

round to generate a solution. Both gray and black blocks correspond to correct results generated at

respective rounds. In this image, the darker the color of the block is, the higher the efficiency of the

result generated at the corresponding round will be. ILS quickly generates a result, albeit inefficiently,

and then improves it over the iterations before the next network topology change (represented by a

vertical line in the figure). In global solutions, an efficient solution can be generated after several

rounds (say r). However, if the network topology changes frequently, no results can be generated in

global solutions, as in Figure 1 where the distance between two changes (c2 and c3) is less than r.

Note that in ILS, nodes exchange new node priority and node status between rounds, while in global

solutions nodes exchange link state information.

In this paper, we focus on using ILS to calculate a CDS with the objective of reducing the CDS

size over a number of iterations. Here ILS is first discussed in a static environment, followed by

its extensions in a dynamic environment. This framework is illustrated using Dai and Wu’s Rule K

[14], an extension of Wu and Li’s marking process [35], as a local solution. Each node determines

its status: marked (inside CDS) or unmarked (outside CDS), based on local topology information

and node priority in the neighborhood. Basically, a node can be unmarked if its neighborhood can

be covered (dominated) by a set of nodes with higher priorities, and these nodes are connected by

themselves.

Dominating sets (DS) have been widely used in the selection process of active node sets in ad hoc

wireless networks. A set is dominating if every node in the network is either in the set or a neighbor

of a node in the set. When active nodes form a dominating set, all nodes in the network are also said

to be reachable. When a DS is connected, which means any two nodes in the DS can be connected

through intermediate nodes from the DS, it is denoted as a connected dominating set (CDS). A CDS

as a virtual backbone has been widely used in broadcasting [27] in MANETs and data aggregation [8]
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Figure 1: A comparison between global, local, and iterative local solutions.

in WSNs. In efficient broadcasting, only dominating nodes need to forward the broadcast packet, and

all remaining nodes can receive the packet without having to forward it. In data aggregation, each

dominating node collects data in its neighborhood, and then aggregates and forwards the data to the

sink. CDS has also been used in the routing protocol OLSR [12], in which link state information is

stored only in dominating nodes.

When applying ILS to a static environment, each node gathers topology information within h hops

(for a small constant h), collecting h-hop information in what is called one round (iteration), and then

determines its node status, marked or unmarked, through an iterative process with a constant number

(k) of iterations. During each iteration, nodes are assigned different priorities so that more nodes can

be unmarked as the process iterates. When applying ILS to a dynamic environment, the challenges

lie in seamlessly blending topology changes into the scheme so that the following properties are

maintained:

• Correctness: The CDS should be maintained at the end of each iteration (round) unless a new

topology change occurs during the iteration.

• Progressiveness: The CDS size should be monotonically decreasing between iterations when

there is no topology change.

• Locality: A topology change only affects the status of nodes in the local neighborhood, where

the hop count in such a neighborhood depends on h.

• Seamlessness: The effects of the iterative process and topology change are integrated in a

seamless way.
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We propose two extensions of ILS: cyclic iterative local solution (CILS) and seamless iterative

local solution (SILS). CILS offers a natural extension of ILS to the dynamic environment where ILS

is cyclically applied for every k iterations. However, none of the above properties can be maintained.

With a novel use of a monotonically increasing sequence number for dynamic node priority, SILS

offers an extension with the desirable properties of correctness, progressiveness, locality, and seam-

lessness.

The major contributions of this paper are the following:

1. We devise a generic framework for the notion of iterative local solutions with a controlled

iteration number.

2. We propose an iterative local solution in a dynamic environment that ensures correctness, pro-

gressiveness, locality, and seamlessness.

3. We offer novel use of a monotonically increasing sequence number as the dynamic node priority

in a dynamic environment to seamlessly integrate the iterative process with topology changes.

4. We provide extensive simulation results under ns-2 and a custom simulator for various trade-

offs in different environment settings.

5. We point out other applications of ILS, including network topology control in MANETs and

area coverage in WSNs.

The remainder of the paper is organized as follows: Section 2 discusses some related work, with

a focus on iterative local solutions (ILS). Section 3 presents the general framework of iterative local

solutions in a static environment. This framework is illustrated using Dai and Wu’s Rule K as a sample

local solution. The section concludes with a discussion on various ways of generating dynamic node

priority based on node IDs. In Section 4, the drawbacks of CILS as a natural extension of ILS are

discussed. Then we propose SILS and present its properties, followed by a special implementation.

Several extensions of SILS are provided in Section 5. Section 6 offers extensive simulations on

a custom simulator. Various trade-offs are shown in different settings in both static and dynamic

environments. The paper concludes in Section 7 with a brief discussion of future directions.

5



2 Related Work

Our objective is to find a CDS that covers a unit disk graph representing a MANET based on local

information. The problem of finding a minimum CDS (MCDS) is NP-complete for both general

graphs [11] and unit disk graphs [26]. Wu and Lou [36] gave a comprehensive classification of

heuristic CDS algorithms in MANETs: global, quasi-global, quasi-local, and local. Global solutions,

such as Das, Sivakumar, and Bharghavan’s MCDS [15] and Guha and Khuller’s greedy algorithm

[19], are based on global state information and are expensive in MANETs. Quasi-global solutions,

such as tree-based CDS approaches [5, 33], require network wide coordination, which causes slow

convergence in large scale networks. Many cluster-based approaches [4, 23, 36] are quasi-local. The

status (clusterhead/non-clusterhead) of each node depends on the status of its neighbors, which in

turn depends on the status of neighbors’ neighbors and so on. The propagation of status information

is relatively short (O(log n)) on average, but can span the entire network in the worst case. Dubhashi et

al [16] proposed another quasi-local approach, with a bounded (O(log n)) steps of status propagation.

In local approaches (i.e., localized algorithms), the status of each node depends on its k-hop infor-

mation only with a small k, and there is no propagation of status information. Local CDS formation

algorithms include Wu and Li’s marking process (MP) [35], several MP variations [10, 14, 31, 34],

Sinha, Sivakumar, and Bhargharan’s CEDAR [28, 29], Qayyum, Viennot, and Laouiti’s multipoint

relay (MPR) [27], and MPR extensions [1, 22, 25].

Many local solutions rely on node priorities to avoid simultaneous withdrawals in mutual coverage

cases. One drawback of these priority-based schemes is that they may select a large CDS based

on a bad priority assignment. Attempts have been made to mitigate this problem. For example,

Stojmenovic [30, 31] proposed to reduce the CDS size via adaptive interpretation of priority values. In

these schemes, the priority assignment is fixed; therefore, they cannot effectively eliminate redundant

dominating nodes. In [3], a mechanism is applied to dynamically maintain the CDS property in a

dynamic environment as opposed to dynamically reducing the CDS size over time.

Several iterative approaches have been proposed to find a small DS [18, 21] or CDS [24] in

MANETs. In [18], Gao et al gave a basic algorithm to find a DS with an expected approximation

ratio of O(
√

n), where each node designates a node with the highest priority in its neighborhood as a

dominator. To obtain an expected O(1) approximation ratio, the basic algorithm is repeated log(log n)

times using exponentially growing transmission ranges. In another iterative DS algorithm proposed
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by Kuhn and Wattenhofer [21], each node v becomes a dominator with a probability pv. If there are

still uncovered nodes (i.e., nodes without neighboring dominators) after this process, these uncovered

nodes also become dominators. The probability pv is computed via a distributed linear program-

ming algorithm that takes k2 iterations with an adjustable parameter k. The iterative algorithm has an

expected approximation ratio of O(k∆2/k log ∆), where ∆ is the maximal node degree.

Liu, Pan, and Cao [24] proposed an iterative extension of Wu and Li’s marking process and Rules

1 and 2 [35] for the local construction of a CDS. In the marking process, a node becomes a dominator

(marked) if it has two neighbors that are not directly connected. According to Rule 1, a marked node

can change back to a non-dominator (unmarked), if all its neighbors are also neighbors of another

marked node with a higher priority (called a coverage node). In Rule 2, a marked node can be un-

marked if its neighbor set is covered jointly by two connected coverage nodes. The iterative extension

takes six rounds. The marking process is applied in round 1. Rule 1 is applied in round 2 with one

priority (lower node ID has a higher priority) and round 3 with another one (higher node ID has a

higher priority). Finally, Rule 2 is applied in rounds 4, 5, and 6 with different priority functions. This

approach produces a smaller CDS than the original marking process and Rules 1 and 2.

None of the above approaches address the CDS maintenance issue in dynamic networks where

topology changes, such as link switched-on/off and node switched-on/off, occur during the iterative

process. This paper proposes an iterative scheme that integrates the CDS maintenance mechanism

into the iterative CDS reduction process, and maintains a CDS at each round of iteration.

3 Iterative Local Solution (ILS) in a Static Environment

This section starts with a general model for iterative local solution (ILS), which extends a scheme

proposed by Liu, Pan, and Cao [24]. Dai and Wu’s Rule K [14] is used as an example to illustrate the

model. The section ends with a discussion of various ways of generating dynamic node priority based

on node IDs.

3.1 General model

Algorithm 1 shows a k-round ILS, where local topology information can be defined in different
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Algorithm 1 k-round Iterative Local Solution (at each node v)
1: Each node collects local topology information and applies a local solution to determine its status

(marked or unmarked).

2: The process completes if the number of iterations reaches k; otherwise, each node selects a new

priority and exchanges status (and priority if needed) with neighbors.

3: Apply the local solution again based on new node status and node priority. Go to step 2 for the

next iteration.

ways. One possible definition is the h-hop information that will be discussed in the next subsection.

Again, we assume that the collection of h-hop information corresponds to one round. The number of

iterations k is a constant and adjustable parameter. The next two subsections focus on the selection of

a local solution and node priority.

3.2 Local solution selection

We use an extension of Wu and Li’s marking process [35], called Rule K [14], in the iterative local

solution (ILS). The following rule is among the most efficient (in terms of producing a small CDS)

non-iterative local solutions.

Algorithm 2 Rule K as Local Solution
A node is unmarked if its neighbors form a clique, or are dominated by a set of connected nodes

with higher priorities.

Formally speaking, a MANET can be represented by an undirected graph G = (V,E), where V is

the set of nodes and E the set of links. N(v) = {u|(u, v) ∈ E} denotes the neighbor set of v. Given a

node set S ⊆ V , N(S) =
⋃

v∈S .N(v) is the set of nodes dominated by S. A node v can be unmarked

if

1. (u,w) ∈ E for all u,w ∈ N(v), or

2. there exists a set of coverage nodes S = {v1, v2, ..., vK}, such that v1, v2, ..., vK have higher

priorities than v, the derived subgraph G(S) is connected, and N(v)− S ⊆ N(S).

Applying Rule K requires h-hop information for h ≥ 2. By h-hop information we mean the

topology and other relevant information (e.g., node priorities) collected at each node via h “Hello”

8



message exchanges among neighbors. For each node v, its h-hop information is a subgraph Gh(v) =

(Nh(v), Eh(v)) of the MANET. Nh(v) is v’s h-hop neighbor set, defined as follows: N0(v) = {v}
and Nh(v) =

⋃
u∈N(v) Nh−1(u) for h ≥ 1. Eh(v) are links among h-hop neighbors, excluding links

between two nodes that are exactly h hops away from v; that is, Eh(v) ⊆ (Nh−1(v) × Nh(v)). The

overhead for collecting h-hop information is h messages per node. Each message includes Gh−1(v)

of the current node v and is of size O(∆h−1), where ∆ is the maximal node degree. A small h should

be used to balance performance and overhead, such as h = 2 in the restricted Rule K, which incurs

O(∆) messaging cost and O(∆2) computing cost per node [14].

In order to use Rule K in the iterative local solution, h-hop information should also include the

priorities and status of h-hop neighbors. In addition, the following restrictions are observed:

1. Initially, all nodes are considered marked.

2. At each round, only marked nodes use Rule K to determine their status, marked or unmarked,

after this round. Unmarked nodes stay unmarked.

3. When applying Rule K, only marked nodes can be used as coverage nodes to unmark other

marked nodes.

The resultant iterative local solution is called the iterative Rule K. Figure 2 shows a sample execu-

tion of iterative Rule K on a static network with 10 nodes. The restricted Rule K is used, i.e., h = 2.

Each node is assigned a random priority at each round (iteration), which is visible to its neighbors. In

round 1, three nodes with priorities 1, 3, and 4 are unmarked (represented by gray circles), because

their neighbors are also neighbors of a node with a priority 6. Other nodes are marked (represented

by black circles), which form a CDS. In round 2, the status of three unmarked nodes (represented

by white circles) is propagated to their neighbors, which will not consider them as coverage nodes in

applying Rule K. According to the new priority assignments, four nodes with priorities 4, 4, 5, and

2 are unmarked. In round 3, no node is unmarked based on the new priority assignment. In round 4,

however, another node with priority 3 is unmarked.

Let V1, V2, . . . , Vk denote the sets of marked nodes after iterations 1, 2, . . . , k, respectively. The

following theorem shows the correctness and effectiveness of the iterative Rule K. Here we assume a

static network that is connected but not completely connected.
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(a) Round 1 (b) Round 2

(d) Round 4

Figure 2: The first four iterations (a-d) of iterative Rule K in a static network with 2-hop information

(i.e., Rule K is restricted). Black nodes are marked (i.e., in the CDS), white nodes are unmarked, and

gray nodes are newly unmarked at each round. The labels of the black and gray nodes denote their

priorities. Priorities of white nodes are irrelevant and omitted.

Theorem 1 In iterative Rule K, Vi is a CDS for all 1 ≤ i ≤ k, and |Vi+1| ≤ |Vi| for all 1 ≤ i ≤ k−1.

Proof: It has been proven in [14] that Rule K with the above constraints preserves the CDS property.

That is, if a node set Vi is a CDS of a network G, then after applying Rule K with the above restriction

3, the resultant marked node set Vi+1 is still a CDS of G. Let V0 be the set of all nodes in the network.

Obviously, V0 is a trivial CDS of G. Therefore, V1, the resultant marked node set of applying Rule K

on V0, is also a CDS of G. Similarly, V2, V3, . . . , Vk are all CDSs of G.

The remaining part of the theorem, |Vi+1| ≤ |Vi| is implied by restriction 2. Since an unmarked

node will not become a marked node during the k iterations, the number of marked nodes will never

increase. 2

After enough rounds of iteration, the marked node set is stabilized; that is, no more marked nodes

can be unmarked regardless of the priority assignment.

Definition 1 An iterative local solution is stabilized at round k
′

if the set of marked nodes does not
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Figure 3: Priority rotation through circular s-shift.

change after round k
′
, i.e., Vk

′ = Vk
′
+1 = . . . = Vk.

In the sample network of Figure 2, the iterative Rule K is stabilized at round 4. The two marked

nodes in Figure 2 (d) cannot be unmarked based on any priority assignment. When the iterative Rule

K takes k′ rounds to stabilize, the sets of marked nodes V1, V2, . . . , Vk′ change significantly in terms

of both set size and set members. The specific value of k′ depends on the priority rotation scheme and

network topology. For example, the number of marked nodes in Figure 2 is 7, 3, 3, and 2 in the first

four rounds. A good priority assignment scheme should achieve a fast convergence, i.e., stabilized in

round k
′ with a small k

′ , and converge to a small CDS as well.

3.3 Node priority rotation

There are several ways to rotate node priority (the corresponding scheme is called dynamic node

priority). Here we denote priority as a function p(v, i) of round number i and node ID v, where the

IP (or MAC) address of each node can be used as its ID. To simplify the discussion, we assume that

the initial priorities of n nodes are integers taken from [1...n]. In reality, a hash function can be used

to map an IP address to an integer priority in [1...n]. Different nodes can have the same hash value as

priority, since many local solutions (including Rule K [14]) support the same node priority case, but

with less efficiency. In fact, as long as no conflict exists in the local neighborhood, efficiency will not

be sacrificed.
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1.   .   .

(a) (b)

01 1 0 1 0 0 1 0 .   .   . 1 0

Figure 4: Perfect shuffle: (a) binary string as node ID, (b) binary string after one circular left shift.

Preposition 1 If n = (∆h)2 is a hash function randomly chosen from a universal class of hash

functions, then the probability of a node priority collision with any node in its h-hop neighborhood is

less than 1/(2∆h).

This preposition can be easily derived from a result in [13]. Note that when h is small the condition

n = (∆h)2 can be easily satisfied.

In the following, we will examine three possible priority rotation schemes.

• Shifting. Initially, the priorities p(v, 0) of all nodes v ∈ V are 1, 2, . . . , n, respectively. At each

round i, the priority of each node v is defined as

p(v, i) = (p(v, i− 1) + s) mod n

where s = bn/kc. The pattern of the priority change can be described as a circular s-shift,

which is shown in Figure 3.

• Shuffling. In this scheme, node priority is changed more dramatically from round to round

following the perfect shuffle [32] scheme. Node priority, represented as a binary string, is

circularly shifted left one bit per iteration (see Figure 4). That is,

p(v, i) = (p(v, i− 1)× 2) mod 2k + bp(v, i− 1)/2k−1c

Here we assume the iteration limit k satisfies 2k ≥ n.

• Random. Node priority is randomly selected from [1..n] at each round, i.e.,

p(v, i) = rnd() mod n

where rnd() is a random number generator. Several nodes can have the same priority. The

major difference between the deterministic approach (including the above shifting and shuf-

fling schemes) and the random approach is that in the former, neighbors exchange node status
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(marked/unmarked) only (except in the first round, where initial node priorities are also ex-

changed), whereas in the latter, neighbors need to exchange both node status and random node

priorities generated at the current round.

Figure 5 is a sample random network with 80 nodes. Rule K, ILS with different node priority

rotation schemes, and the algorithm of Liu, Pan, and Cao [24] (denoted as LPC) are applied to generate

the CDS. We can see that ILS (after 8 rounds) has smaller resultant CDS than LPC and Rule K.

Among the three node priority rotations, Random has the best performance, and Shuffle has the same

result as Shifting. The detailed performance of these protocols will be evaluated in the simulation

section.

4 Seamless Iterative Local Solution (SILS) in a Dynamic Envi-

ronment

In this section, we start with a natural extension, called cyclic iterative local solution (CILS), to be

used in a dynamic environment. After pointing out several drawbacks of CILS, we give a novel exten-

sion of the iterative local solution, called the seamless iterative local solution (SILS). This solution is

first presented as a generic scheme that specifies the critical requirements and desirable properties. A

special case will then be discussed as a practical solution. The section ends with various relaxations

to generalize SILS.

4.1 Cyclic iterative local solution (CILS)

In a static environment without topology changes, the iterative local solution can produce a small CDS

after k′ rounds of iteration, where k′ is the number of rounds needed for stabilization. In a dynamic

environment with node mobility (modeled as link switched-on/off operations and node switched-

on/off operations), each node must reconsider its status periodically in order to maintain the CDS

property. A natural, but somewhat nave, extension of the iterative local solution, called cyclic iterative

local solution (CILS), can be used to handle topology changes. In this scheme, all nodes will reset

their status and the process will start over again for every k rounds of iteration. That is, all nodes are

considered marked again in round k + 1, and become gradually unmarked in the following k rounds:
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(a) Rule K (34 nodes)
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(b) LPC (29 nodes)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 51

8

1

18

1

38

1

45

1
56

2

13

2

15

2

19

2

21

2

25

2

44

2

47

2

49

2

52

2

55

2

57

2

61

2

64

2
65

2

66

2

72

2
75

2

77

2

80

3

10

3

17

3
26

3

35

3

40

3

48

3

54

3

62

3

68

3

71

3

73

4

11

4

12

4

17

4

29

4

35

4

40

4

54

4

58

4604

68

4

70

4

74

4
78

5

48

5
56

5

71 6

26

6

62

7

39

7

58

8

18

8

33

838 8

45

8

56

9

23

9

50

9

53

9

63

9

67

10

17

10

26

10

35

10

40

10

48

10

54

10

62

10

68

10

79

11

54

11

58

11

60

11 7011

74

11

78

12

17

12

29

12

30

12

35

12

40

1254 12

60

12

70

12

79

13

15

13

16

13

19

13

21

13

25

13

34

13

36

13

44

13

47

13

49

1352 13

55

13

59

13

61

13

64

13

65

13

66

13 7213

80

14

37

14

41

14

43

14

69

15

31

15

43

15

47

15

52

15

57

15

61

15

66

16

34

16

37

16
41

16

52

16
69

17

26

17
35

17 4017

54

17

60

17

68

17

73

17

78

17

79

18
33

18

38

18

45

18

53

18
56

19

21

19

25

19

34

19

36

19

44

19

47

19

49

19

55

19

59

19

61

19

64

19

65

19

66

19

72

19

75

19

76

19

77

19

80

20

28

20

46

20

76

21

25

21

28

21

36

21

44

21

46

21

47

21

49

21

55

21

59

21
64
21

65

21

66

21

72

21

75

21

76

21

77

2180

22

24

22

27

22

32

22

42

23

45

23

53

23

63

23

67

24

27

24

31

24

32

24

42

24

43

25

34

25

36

25
44
25

47

25
49

25

52

25

55

25

59

2561 25

64

25

65

25

66

25

72

25

75

25

76

25

77

25

80

26

35

26

40

26

62

26

68

26

79

27
32

28
46

28

64

28

75

28

76

28

77

29

30

29

40

29

58

29

70

29

79

30

70

30

79

31

42

31

43

31

57

33

38

33

50

33

53

33

67

34

36

34

44

34

49

34

52

34

55

34

59

34

61

34

66

34

72

34

74

34

80

35
40

35

54

35

60

35

68

35
73

35

78

36

44

36

49

36

55

36

58

36

59

36

64

36

65

36

72

36

74

36

75

36

76

36

80

37

41

37

51

37

63

37

69

38

45

38

56

39

58

39

70

40

54

40

60

40

68

40

79

41

52

41

69

43

57

44

47

44 4944

52

44

55

44

59

44
61

44

64

44

65

44

66

44

72

44

75

44

76

44

77

44

80

45

56

46

64

46

65

46

75

46

76

46

77

47

49

47

55

47

59

47

61

47

64

47

65

47
66

47

72

47

75

47
76

47

77

47

80

48

62

48

68

48

71

48

73

49

55

49

59

49

64

49

65

49

66

49

72

49

75

49

76

49

77

49

80

50 5350

63

50
67

51

63

52

61

52

66

52

69

52 72

53

63

53
67

54

60

54

68

54

70

54

73

54

74

54

78

55
59

55

61

55

64

55

65

55

66

55

72

55

75

55

76

55

80

57

61

57

66

58

60

58

70

58

74

59

64

59

65

59

72

59

75

59

76

59

80

60

68

60

70

60

74

60
78

61

66

61

72

61

80

62

68

63

67

64

65

64
66

64

72

64

75

64
76

64

77

64
80

65

66

65

72

65 7565

76

65

77

65

80

66

72

66

75

66

77

66

80

68

73

68

78

70

74

70

78

72

75

72

76

72

80

73

78

74

78

75

76

75

77

75

80

76

77

76

80

77

80

1

(c) ILS & Random (26 nodes)
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(d) ILS & Shuffle/Shifting (27 nodes)

Figure 5: Sample CDS of different algorithms in a random network with 80 nodes.

k+1, k+2, . . . , 2k. The same process will repeat in rounds 2k+1, 2k+2, . . . , 3k and so on. Figure 6

(a) shows the general pattern of the CDS size with respect to the number of rounds. Such a scheme

has certain limitations and we again use Rule K to illustrate.

However, CILS suffers from the following drawbacks:

• Broken CDS. The cyclic scheme guarantees a CDS, Vi, for 1 ≤ i ≤ k only if there is

no topology change during these k iterations. If a topology change occurs in round i, then

Vi+1, Vi+2, . . . , Vk may not be a CDS. For example, if the left node with priority 6 in Figure 2 (a)

switches off after round 1, the set of marked nodes in the following rounds cannot form a CDS.
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Figure 6: Two extensions to dynamic environments: (a) cyclic iterative local solution, (b) seamless

iterative local solution.

• Non-adaptiveness. The selection of k in the cyclic scheme is non-adaptive. The cycle repeats

even in a static environment. On the other hand, a large k will increase the probability of a

broken CDS in a dynamic environment.

In fact, a broken CDS violates the correctness property. Non-adaptiveness destroys the progres-

siveness property, in which the CDS should be monotonically decreasing when there is no topology

change. Non-adaptiveness also causes the seamlessness property to fail since an explicit counter is

needed to keep track of iteration. The nature of cyclic application also breaks the locality property

because the locality property must ensure that the number and selection of marked nodes does not

change significantly after each topology change. The seamless iterative local solution (SILS) dis-

cussed in the next section meets all the above properties.

4.2 Seamless iterative local solution (SILS)

Again, we use Rule K to illustrate SILS, and the corresponding approach is called the seamless itera-

tive Rule K. The basic idea is that the CDS formation process continues beyond k rounds of iteration.

Node status (marked/unmarked) is adjusted in reaction to topology changes as the process iterates.

These adjustments are conducted smoothly in small vicinities of topology changes without a global

reset operation. Two important changes are made in this extension.

1. At each round, Rule K is applied at all nodes, marked or unmarked previously, to determine
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their new status. Note that in the original iterative solution (Section 3.2), only a marked node

may change its status as stated in restriction 2.

2. Node status is no longer exchanged among neighbors. The restriction 3 in the iterative Rule K

(only marked nodes can be coverage nodes) is removed.

In the new extension, the original Rule K is applied based on h-hop information with a small h,

including topology and priority information. At the beginning of each round i, each node collects the

latest h-hop information through h rounds of “Hello” exchanges among neighbors. Each node v also

selects its priority P (v, i)1, which is embedded in the “Hello” messages and disseminated to its h-hop

neighbors. The priority of a node can be any value that satisfies the following conditions:

1. P (v, i) ≥ P (v, i− 1) for all i ≥ 1.

2. P (v, i) = P (v, i− 1), if v is unmarked in round i.

The following theorem shows that the seamless iterative Rule K “repairs” a CDS in one round. If

a topology change occurs in round i − 1 and damages the CDS, a new CDS will be formed in round

i, if no more topology changes occur in round i. This “repair rate” is the same as in the original

(non-iterative) Rule K. Note that if the network topology changes in every round, no traditional local

solution can maintain a CDS. Again, we use Vi to denote the set of marked nodes in round i, and

assume that the network is connected in each round.

Theorem 2 (Correctness) With the seamless iterative Rule K, Vi is a CDS in round i if there is no

topology change in the current round.

Proof: Let Gi be the network topology at the beginning of round i. As proved in [14], the marked

node set Vi selected via Rule K is a CDS of Gi. Since no topology change occurs in this round, Vi is

also a CDS within the entire duration of round i. 2

The next theorem shows that the seamless iterative Rule K is as effective as the iterative Rule K

in a static environment.

1Here we use a upper case P to distinguish the monotonically increasing priority in SILS from the one in CILS.
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Theorem 3 (Progressiveness) With the seamless iterative Rule K, |Vi| ≥ |Vi+1| ≥ . . . ≥ |Vj| if there

is no topology change in rounds i, i + 1, . . . , j.

Proof: Suppose a node v is unmarked in round x (i ≤ x < j). We show that v will stay unmarked in

round x + 1. Based on Rule K, if v is unmarked in round x, then all neighbors of v either (1) form

a clique, or (2) are dominated by some connected coverage nodes u1, u2, . . . , uK where P (v, x) <

min{P (u1, x), P (u2, x), . . . , P (uK , x)}. In either case, v will be unmarked in round x+1 if v’s h-hop

topology is not changed. In case (1), v’s neighbors are still pairwise connected. In case (2), v’s neigh-

bors are still covered by nodes u1, u2, . . . , uK , and P (v, x + 1) = P (v, x) < min{P (u1, x), P (u2, x),

. . . , P (uK , x)} ≤ min{P (u1, x + 1), P (u2, x + 1), . . . , P (uK , x + 1)}. Therefore, Vx+1 ⊆ Vx for all

1 ≤ x < j. 2

Finally we show that the effect of a topology change is localized. Specifically, when the seamless

iterative Rule K uses h-hop information to determine the status of each node, the influence of a

topology change is within 2h hops. We say a node v is within h hops of a topology change if such a

change can be detected by v via collecting h-hop information.

Theorem 4 (Locality) If the seamless iterative Rule K is stabilized at round i, then only nodes within

2h hops of a topology change may change their status after round i.

Proof: Let v be a node that changes its status in round j > i. We first consider the case that v is

unmarked in round j − 1 and marked in round j. From the proof of Theorem 3, v will stay unmarked

as long as its h-hop topology is unchanged. Therefore, v is within h hops of a topology change.

Then we consider the case that v is marked in round j − 1 and unmarked in round j. The theorem

holds when v is within h hops of a topology change; otherwise, v’s h-hop topology is unchanged. The

only reason for v to be unmarked is priority changes in v’s h-hop neighbors. Note that v’s neighbor

set cannot be dominated by a set of marked nodes in round i; otherwise, v will be unmarked in round

j > i when there is no topology change, which contradicts the assumption that the marking process is

stabilized at round i. In order to cover N(v), at least one node u ∈ Nh(v) must have raised its status

from unmarked to marked (and raised its priority) after round i. From the first part of this proof, u is

within h hops of a topology change. Since v is at most h hops away from u, it is within 2h hops of

this topology change. 2
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Figure 7: A seamless iterative Rule K with 3-hop information. (a) Priority assignment after the first

four rounds of iteration, where the random priority of each node in each round is the same as in

Figure 2. (b) Handling a node switch-on event in round 5. (c) Handling a node switch-off event in

rounds 5 and 6.

Note that the dynamic priority P integrates the treatment of both the iterative process and topology

change in a seamless way. Figure 6 (b) shows a general pattern of CDS size. Notice that the CDS can

increase as a response to a topology change (such as a newly switched-on node).

4.3 A special case

This subsection presents a special case of the seamless iterative Rule K, which is equivalent to the

iterative Rule K in static networks and has all the desirable properties of the seamless iterative Rule

K in a dynamic environment. For each round i ≥ 1, the new priority of a node v is a 2-tuple

(s, p), where s is a sequence number, which records the most recent iteration that a node was marked.

A node with a higher sequence number has a higher priority. p is a secondary priority to break a tie

between two nodes with the same sequence number. Let p(v, i) be one of the priority rotation schemes
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in Section 3.1.

P (v, i) =





(i− 1, p(v, i)) : v is marked in round i− 1

P (v, i− 1) : otherwise
(1)

All nodes are considered marked in the first round. Therefore, when i = 1, the corresponding

priority of each node v is P (v, 1) = (0, p(v, 0)). Any new node (e.g, a node that switches on in the

current round) is also considered marked. A node v added at the beginning of round i has the priority

(i− 1, p(v, i)).

Figure 7 illustrates the seamless iterative Rule K using the priority function (1). In a static network

(as shown Figure 7 (a)), the marking process is stabilized after round 4. At each iteration, the dynamic

Rule K produces the same set of marked nodes as in the iterative Rule K (as shown in Figure 2). Note

that nodes with priority (i−1, p) are unmarked after iteration i. Figure 7 (b) shows a dynamic network

where a new node is added (switches on) right before round 5. After detecting this topology change,

a node with priority (1,5) is marked in round 5 to maintain a CDS, while the new node with priority

(4,9) is unmarked immediately. Figure 7 (c) shows the situation of node switch-off. After the topology

change is detected in round 5, four unmarked nodes become marked to form a CDS. In round 6, all

marked nodes adjust their priority values. A newly marked node with the lowest priority is unmarked,

producing a smaller CDS.

Theorem 5 In a static network, the seamless iterative Rule K using the priority function (1) produces

the same set of marked nodes as the iterative Rule K at each iteration.

Proof: Let P (v, i) and Vi denote the priority of node v and the set of marked nodes, respectively, in

the iterative Rule K in round i. Let P
′
(v, i) and V

′
i be the priority function and marked node set in

the seamless iterative Rule K. In round 1 P (v, i) = p(v, 1). From equation (1), P
′
(v, i) = (0, p(v, 1))

because all nodes are considered marked before round 1. Obviously, P (v, i) < P (u, i) iff P
′
(v, i) <

P
′
(u, i). Therefore, a node that is unmarked in the iterative Rule K is also unmarked in the seamless

iterative Rule K; that is, V1 = V
′
1 .

Given i ≥ 1 and Vi = V
′
i , we show that Vi+1 = V

′
i+1. Suppose a node v is marked in round i and

unmarked in round i+1 in the iterative Rule K. Node v is covered by several connected marked nodes

u1, u2, . . . , uK with p(v, i + 1) < min{p(u1, i + 1), p(u2, i + 1), . . . , p(uK , i + 1)}. In the seamless
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iterative Rule K, the priority of a marked node v in round i is P
′
(v, i+1) = (i, p(v, i+1)). Therefore,

P
′
(v, i + 1) < min{P ′

(u1, i + 1), P
′
(u2, i + 1), . . . , P

′
(uK , i + 1)}, and v is also unmarked in the

seamless iterative Rule K. Similarly, any node unmarked in the seamless iterative Rule k will also be

unmarked in the same round of the iterative Rule K. 2

5 Extensions

In previous discussions, some simplified assumptions are used in SILS to ease discussion. This section

shows that those assumptions can be relaxed, while preserving various desirable properties.

5.1 “Hello” message frequency

In Section 4.2, it is assumed that each node collects the latest h-hop information in each round.

Therefore, each node will send h “Hello” messages per iteration. This requirement can be relaxed

with the penalty of a slightly slower CDS repairing speed. Based on the relaxed requirement, each

node sends only one “Hello” message per iteration. After a topology change occurs, it will be detected

by all nodes within h hops in h rounds. Therefore, the CDS repair takes at most h rounds. Specifically,

Vi is guaranteed to be a CDS if there is no topology change in rounds i−h+1, i−h, . . . , i−1, i. Since

all nodes may update their priorities at each round, the priority of a node in the h-hop information

may be lower than its actual priority. This may cause conservative decisions (i.e., produce more

marked nodes), but will not affect the correctness. All the localized algorithms have the same message

complexity: O(1) message per node, with message size of O(∆), where ∆ is the maximum node

degree.

5.2 Asynchronous “Hello” messages

All previous discussions use a synchronous model. That is, the marking process is conducted in

rounds. All nodes finish their work in the last round, including exchanging “Hello” messages and

determining their status, before any node starts the next round. In fact, the SILS is still correct with

asynchronous “Hello” messages and decision making processes. Suppose each node v has its unique

“Hello” interval and re-computes its status whenever a new “Hello” message is received. CDS is still
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guaranteed if there is no topology change in a recent time period of h×max{Th(v)}, where {Th(v)}
is a set of “Hello” intervals of v’s h-hop neighbors.

One problem is determining the round number i in equation (1) at each node when there is no

global synchronous iteration or round. The solution is to use a round number that is larger than

all known sequence numbers. Specifically, the current round number with respect to a node v is

i = max{Ih(v)}+ 1, where {Ih(v)} is a set of sequence numbers belonging to v’s h-hop neighbors.

5.3 Sequence numbers for new nodes

In Section 4.3, it is assumed that all new (switched-on) nodes have a sequence number that is equal to

the current round number. Nevertheless, the special case is also correct if a smaller sequence number

is selected. For example, if the new node in Figure 7 (b) uses a sequence number 0, which changes its

priority to (0, 9), the resultant set of marked nodes is still a CDS. Intuitively, using a large sequence

number for new nodes can help unmark previously marked nodes. Using a small sequence number

for a new node can help the new node unmark itself.

5.4 Sequence number recycle

In the previous discussion, we assume that the sequence number can increase infinitely without caus-

ing overflow. In a practical implementation, each sequence number occupies a finite number of bits,

and is reset periodically. Reset occurs when the largest sequence number exceeds the maximum value,

when all nodes will set their sequence numbers to zero. In synchronous systems, a reset operation

can be triggered when the current round number reaches a given threshold. In asynchronous systems

without a global round number, this operation can be initialized via a network wide broadcasting.

The reset operation preserves correctness, but violates the progressiveness, locality, and seamlessness

principles, as in CILS. The difference is that in SILS, the reset operations are much less frequent.

5.5 Simultaneous topology changes

The correctness of SILS depends on the accuracy of h-hop topology Gh(v) collected by each node v.

If there are no topology changes during a time period that is sufficiently large to complete h “Hello”
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message exchanges, each node will have accurate h-hop topology information to select a CDS. Neither

the type of topology changes (node or link switched-on/off) nor the combination of topology changes

(one per round, several per round, or in the middle of two rounds) will affect the correctness of the

algorithm. Therefore, there is no need to enforce “atomicity” of each change or to “serialize” these

changes.

5.6 Time-driven vs. event-driven update

In above discussion, we assume a time-driven approach. All nodes periodically exchange messages

and update their statuses using a fixed “Hello” interval. In semi-static networks with scarce topology

changes, an event-driven scheme can be used to reduce the message overhead. The basic idea is that

a node will stop sending “Hello” messages or update its status, if there is no topology change in its

h-hop neighborhood.

Two difficulties exist in implementing the event-driven scheme. First, stopping the iterative pro-

cess too soon may cause a large CDS size. As a solution, a node will do k more iterations after its

neighborhood topology becomes static, where k is determined based on experimental data to balance

performance and overhead. Second, each node relies on the “Hello” messages of its neighbors to

detect topology changes. Totally eliminating “Hello” messages also disables this neighbor discovery

mechanism. Instead, an adaptive scheme should be used: each node increases its “Hello” interval

when no topology change happens, and decreases otherwise. The new “Hello” interval is advertised

in the previous “Hello” message for the ease of link failure detection.

5.7 Selection of local solution

In this paper, we use Rule K as a sample local solution in ILS. Other local solutions that use node pri-

ority to prevent simultaneous withdrawals can use the same iterative approach to reduce the resultant

CDS size. For example, both Wu and Dai’s coverage condition [34] and Adjih, Jacquet, and Viennot’s

extended MPR [2] can be used in place of Rule K in ILS.
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Figure 8: Performance of ILS in a static environment.

6 Simulation

Our simulation study has focused on the performance improvement after applying iterative local so-

lution (ILS) on restricted Rule K, which has demonstrated high efficiency and reliability in dynamic

networks in a previous simulation study [6]. It contains two parts. Part one focuses on the efficiency

(in terms of the derived CDS size) of the iterative Rule K compared with existing CDS algorithms.

This part is conducted via a custom simulator, which simulates a static network for the sake of simu-

lation speed. Part two explores both efficiency and reliability (in terms of coverage), which requires

a more realistic environment with topology changes and packet losses. This part is implemented on

ns-2(1b7a) [17]. Two dynamic networks are considered: WSNs, where sensor node switch operations

dominate, and MANETs, where topology changes are mainly caused by node movement.

6.1 Static environment

In this subsection, the performance of iterative Rule K is compared with Wu and Li’s Rule 1&2 [35],

Dai and Wu’s Rule K [14], and the algorithm of Liu, Pan, and Cao [24] (denoted as LPC), using the

custom simulator. The MCDS algorithm of Das et al [15] is a global CDS approach, which “grows”

a tree from a selected root until all nodes are covered. Non-leaf nodes form a CDS. MCDS has

an O(log ∆) approximation ratio in regular graphs, where ∆ is the maximum degree. The MCDS
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Figure 9: CDS size at each round in the switched-on/off model (n = 100, k = 10).

algorithm has competitive performance in unit disk graphs and we use the result of MCDS as a

baseline in the comparison.

To generate a random network, n nodes are randomly placed in a restricted 1000×1000 area. The

network is modeled as a unit disk graph with a fixed transmission range of 250. Networks that cannot

form a connected graph are discarded. The tunable parameters in this simulation are as follows: (1)

The node number n, which changes from 80 to 150, and (2) the iteration number (round number)

k. The performance metric is the number of nodes in the resultant connected dominating set (CDS).

For each tunable parameter, the simulation is repeated 1000 times or until the confidence interval is

sufficiently small (±1%, for the confidence level of 90%). We use the restricted Rule K with h = 2

as a sample local solution for ISL.

Figure 8 (a) shows the comparison of Rule 1&2, Rule K, LPC, and several implementations of ILS

with priorities of shifting scheme (Shifting), random node value (Random), perfect shuffle (Shuffle),

and MCDS, where the iteration number k equals 8. We can see that LPC beats non-iterative Rules

1&2 and Rule K, and ILS has even smaller CDS size than LPC. Among the three node priority

approaches, Random has the best performance. Shuffle is better than Shifting when the number of

nodes is relatively large. Since Random has the best performance, we use this approach for ILS in the

subsequent analysis.

Figure 8 (b) shows the results of ILS with different iteration numbers (k). We can see that, with

a larger k, the size of the resultant CDS is smaller. But when k increases to 10, the performance can
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Figure 10: Analysis with different switched-on/off percentage (n = 100, k = 10).

hardly be further improved. Therefore, we use k = 10 in the following simulation.

6.2 Dynamic environment

In this subsection, cyclic iterative local solution (CILS) and seamless iterative local solution (SILS)

are evaluated in a WSN environment, where the topology change is caused by nodes switching on and

off or movement. The simulation in this subsection is conducted on ns2 and its CMU wireless and

mobility extension [20], using the IEEE 802.11 MAC layer, limited queue space in the link layer, and

the two-ray ground reflection radio propagation model with constant antenna heights. An ad hoc or

sensor network is also a dynamic unit disk graph under this model. The simulation time is 100s and
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Figure 11: CDS size at each round in the random waypoint model.

the traffic load is 1 broadcast packet per second.

The switched-on/off model. We design and implement the switched-on/off model in ns2. In the

switched-on/off model, only a subset of deployed nodes is active. After every fixed pause time (10s),

a certain amount of nodes (determined by the switched on/off percentage) change their status (from on

to off or vice versa). The switched on/off percentage which represents the significance of the topology

change, is a tunable parameter.

Figure 9 (a) demonstrates the CDS size at each round of CILS in a single run of this simulation.

Two percentages of switched-on/off nodes, 0 and 0.01, are used to represent static and dynamic envi-

ronments. The result is consistent with the theoretical analysis. There is little difference whether the

network is static or dynamic. In each cycle, which is 10 rounds (i.e., k = 10), the CDS size decreases.

In the next cycle, all the working nodes are marked again. Therefore, even though there is no topology

change, the CDS size jumps up at the beginning of each cycle.

Figure 9 (b) shows the CDS size at each round of SILS in a single run. When the network is static,

the CDS size decreases with rounds, achieves minimum at about round 5, and stays there. When

the network is dynamic, the CDS size oscillates with rounds. But since the topology change is not

significant and SILS has better locality, the oscillation is less than that of CILS.

Figure 10 shows the performance of CILS, SILS and Rule K with different switched on/off per-

centages. (a) shows the average percentage of forwarding nodes in the network, which represents the

CDS size. We can see that when the switched on/off ratio is 0, that is, the network is static, SILS has
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Figure 12: Analysis with different average moving speed (n = 100, k = 10).

the smallest CDS size and Rule K has the largest. SILS is better than CILS because CILS calculates

the CDS periodically, as shown in Figure 6, which leads to larger average CDS size. With the growth

of the switch on/off ratio, both CILS and SILS have increasing CDS size while Rule K has decreasing

size. This is because Rule K only calculates the CDS once. With less active nodes, its CDS size is

smaller. SILS has a larger CDS than CILS when the network change is significant, because SILS

maintains the locality property as topology changes and maintains a CDS at each round.

Figure 10 (b) shows the normalized broadcast costs of the three protocols with different switched

on/off percentages. (c) shows the packets received per node. We can see that these two results are

similar to the results in (a). This is because larger CDS size leads to larger broadcast overhead. (d) is

the delivery ratio comparison. The delivery ratio of SILS decreases very slightly when the topology
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changes. CILS has the second best performance and Rule K has the worst.

The random waypoint mobility model. In the random waypoint mobility model [7], each node

selects its destination randomly within the deployment region and moves with a random speed. When

it reaches the destination, the node pauses for a fixed time period, 10s, and then repeats this process.

The average moving speed is a tunable parameter which represents the magnitude of the topology

change.

Figure 11 (a) shows the size of resultant CDS at each round of CILS, and Figure 11 (b) is that

of SILS in a single run. Similar to the result shown in Figure 9, CILS has oscillation regardless of

whether the nodes move or not. SILS is stabilized in round 10 when there is no movement; it oscillates

when there is movement, but the oscillation is calmer and the size of CDS is smaller than that of the

first several rounds.

Figure 12 shows the performance of CILS, SILS, and Rule K with different average node veloci-

ties. (a) is the percentage of forwarding nodes, which represents the CDS size. (b) is the normalized

broadcast cost. (c) is the packets received per node and (d) is the delivery ratio. We can see that these

figures are quite similar to those in Figure 10. When the network is relatively static, SILS generates

the smallest CDS and CILS has the second best performance. Under high mobility, Rule K fails to

find the valid CDS, and CILS has a smaller average CDS size than SILS but the resultant CDSs during

the cycle may be broken.

The simulation results can be summarized as follows:

1. The proposed iterative local solution for CDS, using the restricted Rule K as the local solution,

has better performance than Wu and Li’s Rule 1&2, Dai and Wu’s Rule K, and Liu, Pan, and

Cao’s algorithm in terms of the resultant CDS size.

2. The iteration number k of ILS does not need to be large to achieve good performance; k = 10

is sufficient in our setting.

3. Among the three node priority selection approaches, random node value has the best perfor-

mance in terms of CDS size.

4. In a dynamic environment, in either the switched-on/off or random waypoint model, SILS has

better performance than CILS. SILS responds quickly (locality) to network topology change

while CILS does not respond to the change during a cycle.
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5. When the network is relatively static, CILS has larger average DS size than SILS. Note that

CILS does not guarantee a CDS while SILS does.

7 Conclusions

This paper provides a general framework for the iterative local solution. The main contribution is the

seamless integration of the iterative process and the handling of topology changes in ad hoc wireless

networks which include both WSNs and MANETs. We have considered two extensions to the itera-

tive local solution to extend its use beyond the static environment. One is a natural extension that fails

to obtain many desirable properties. The other uses monotonically increasing node priority to achieve

seamless integration and maintain several desirable properties. The work of this paper provides in-

sights on how to add some new features to a typical local solution in a dynamic environment.

The iterative local solution is not restricted to calculating CDS, but can apply to other applications

as well, such as network topology control in MANETS and area coverage in WSNs. The extension

of the current framework to cover a wide range of applications in WSNs and MANETs will be our

future research direction.
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