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Abstract— In a wireless sensor network (WSN), the sensor
distribution is vital to the quality of service (QoS) of the
network, because the effectiveness of the network depends on the
coverage of the monitoring area. In WSNs where sensors have
locomotion facilities, after the initial deployment, the sensors can
move around and self-redeploy to ensure global coverage and
load balance. The movement-assisted sensor deployment aims at
moving sensors to meet coverage and load balance requirements.
In this paper, we focus on developing a distributed and localized
solution, approximating the global optimal solution [1]. The
proposed local solution has similar performance to the Hun-
garian method, without centralized control. Extensive theoretical
analysis together with simulations has been done to verify the
effectiveness of the proposed distributed solutions.

Index Terms— Hungarian method, load balance, local solution,
sensor deployment, wireless sensor network (WSN).

I. INTRODUCTION

A wireless sensor network (WSN) [2] is a distributed system
for information collection combining sensing, processing, and
communications. The effectiveness of a WSN depends on the
coverage of the monitoring area by the deployed sensors.
Generally, a sufficient number of sensors are used to ensure
the coverage and even a certain degree of redundancy so that
sensors can rotate between active and sleep modes. However,
a good sensor distribution is still needed for coverage and to
balance the workload of sensors. By load balance, we mean
each unit of monitoring area is covered by the same number of
sensors. Recently, equipped with locomotion facilities, sensors
can move around after initial deployment. Thus, WSNs are
now capable of self-deploying to further improve the coverage
and load balance.

In existing works, two methods are used to enhance the sen-
sor coverage: incremental sensor deployment and movement-
assisted sensor deployment. Incremental self-deployment [3]
incrementally deploys sensors, with each one using informa-
tion gathered from previously deployed nodes to determine
its optimal location. This method is developed for robot
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applications, and a centralized control is necessary. Movement-
assisted sensor deployment [4] uses a potential-field-based ap-
proach to move existing sensors by treating sensors as virtual
particles, subject to virtual forces. Note that here load balance
implies coverage and hence it is a stronger requirement. To
achieve coverage/load balance, various optimization problems
can be defined to minimize different parameters, including
total moving distance, total number of moves, communica-
tion/computation cost, and convergence rate.

In SMART [5], Wu and Yang related the sensor deployment
in a flat 2-D grid-based mesh to the classic load balance
problem in parallel processing. They proposed a scan-based
solution that does not resort to global (load) information. One
unique issue in WSNs called the communication hole problem
was identified and addressed. In a recent paper [1], they
further proposed an optimal solution for the sensor deployment
issue in 2-D meshes. This solution is based on the classic
Hungarian method, which requires global information, and
achieves optimal total moving distance and number of moves.

In this paper, we focus on the distributed and localized load
balance solutions in WSNs that minimize the total moving
distance of sensors and the number of moves. The basic
monitoring area is still a 2-D grid-based mesh (2-D mesh). We
provide a local solution in 2-D meshes which has approximate
performance compared with the optimal global solution. This
local solution can be extended to solve load balance in
any network topology. Specifically, in this paper, we: (1)
propose a local load balance solution which has approximate
performance compared with the Hungarian method based
optimal solution, (2) conduct theoretical analysis to verify the
effectiveness and limitations of the proposed solution, and (3)
perform extensive simulations to verify its performance.

II. PRELIMINARIES AND RELATED WORK

A. Movement-assisted sensor deployment overview

The sensor placement issue has been widely studied re-
cently [6], [7]. In incremental sensor deployment [3], nodes
are deployed one by one, using the location information of
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Fig. 1. An ideal case for SMART: (a) initial deployment, (b) after row scan,
and (c) after column scan.

previously deployed nodes to deploy the current one. This
centralized algorithm is not scalable and is computationally ex-
pensive. Most existing movement-assisted sensor deployment
protocols rely on the notion of virtual force to move existing
sensors from an initial unbalanced state to a balanced state.

In [8], Zou and Chakrabarty proposed a centralized virtual
force based mobile sensor deployment algorithm (VFA), which
combines the idea of potential field and disk packing [9].

In [10], Wang, Cao, and La Porta used Voronoi diagrams
[11] to find coverage holes in the sensor network, and proposed
algorithms to guide sensor movement toward the coverage
hole. The termination condition of their algorithms is coverage
instead of load balance. In a recent work [12], they proposed
a grid-quorum solution to quickly locate the closest redundant
sensors to the target area, where a sensor failure occurs.

B. SMART: a scan-based approach

The scan-based SMART [5] approach is a hybrid of local
and global. In the n × n 2-D mesh of grids, two scans are
used in sequence: one for all rows, followed by another for
all columns. Within each array, the scan operation, where the
prefix sum of the loads in all grids is passed on from one end
of the array to the other, is used to calculate the average load
and then to determine the amount of overload or underload in
grids. Load is shifted from overloaded grids to underloaded
grids in an optimal way to achieve a balanced state.

The 2-D scan process involves a row scan followed by a
column scan as shown in Figures 1 (b) and 1 (c), respectively.
The result of the 2-D scan process usually does not generate
an ideal global balanced state (as in Figure 1, still one grid is
underload and one is overload). However, the maximum load
difference between any two grids is bounded by 2.

C. The Hungarian method based optimal solution

The Hungarian method is proposed to solve the edge
weighted matching problem in a complete bipartite graph
Km,m with number associated edges called weights. The
objective is to find a perfect matching (of m pairs), such that
the sum of the weights of edges in the matching is maximum
(or minimum).
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Fig. 2. The node and edge weighted bipartite graph of Figure 1 with “give”
grids at the left-hand side and “take” grids at the right-hand side.

To use the Hungarian method for load balance in WSNs,
we need to first convert the 2-D mesh to a complete bipartite
graph. After the global average is achieved, the “give” and
“take” grids appear at the left and right hand sides of the
bipartite graph, respectively. The node weight corresponds to
the amount of overload and underload, and the edge weight
represents the distance between the “give” and “take” grids in
a matching pair as shown in Figure 2 (based on the example in
Figure 1). The edge weight is the distance between two end
nodes M [i, j] and M [i

′
, j

′
]. Then an edge weighted perfect

bipartite graph is derived by expanding each node with weight
k to k “clone” nodes. The edge weight of clone nodes will
be inherited from the original nodes. The Hungarian method
is then applied to this graph and the optimal result is to find
m lines from the m2 dotted lines.

The cost of the Hungarian method for load balance in
WSNs is O(m3) [13], where m is the amount of overloads
(underloads) which is bounded by the number of sensors.
Usually, the number of sensors is one or two magnitudes
higher than the number of grids (n). The solution based on
the Hungarian method is centralized.

III. A LOCAL SOLUTION FOR THE HUNGARIAN

ALGORITHM

In this section, we propose a local solution for the Hun-
garian method. After the states of the grids are decided, the
grids communicate among themselves to determine the load
transferring without the centralized control.

A. Assumptions

The following assumptions are used: (1) The monitoring and
deployment area is an n×n grid, with each grid of size r×r.
In the grid-based 2-D mesh, each grid point at position (i, j)
has four neighbors at positions: (i−1, j), (i, j−1), (i, j +1),
and (i + 1, j). Among existing approaches, TTDD [14] and
GAF [15] use geographic location to partition the network
into a 2-D mesh. (2) Each sensor has position information
and has uniform sensing range

√
2r and two transmission
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Fig. 3. Local Hungarian method: (a) first iteration, (b) second iteration, and
(c) third iteration.

ranges
√

2r (for intra-grid communication) and
√

5r (for inter-
grid communication). (3) The sensor network is sufficiently
dense so that each grid (cluster) has at least one sensor. A
leader (clusterhead) in each grid is selected to coordinate
activities with leaders of its four neighbors, using inter-grid
transmission range. We also assume that each grid knows the
global average load already, and hence its take/give state and
absent/extra loads. The global average could be a predefined
system parameter or achieved by the scan-based approach as
in SMART algorithm. The synchronization of the network
can be achieved by techniques providing micro-second level
synchronization [16].

B. The local Hungarian solution in 2-D meshes

In the local algorithm, each grid in the give state initializes
the matching procedure by sending out an “invite” message
(IM) to its neighbors, including Δ, which is the difference
between its loads and the global average, and a predefined
time-to-live data (TTL) which indicates the transmission range
of this IM. If the grid that gets the IM is not in the take state,
it forwards the IM if the TTL is not expired. A grid in the
take state sends a reply message (RM) back when it gets the
IM as well as forwarding it, and indicates the load it lacks.
When it receives the RM, the give grid sends out some of its
loads to the take grid. When a give state grid sends out a IM,
the TTL of the message is tunable. At first, a small range is
used. If there is no response, the range is increased to search
a larger area for take state grids. This procedure is similar to
the expanding ring search in ad hoc networks. If a take state
grid gets several IMs, it picks the nearest to respond. It may
respond to several give grids in case the donation of any one
of them is not enough. When a give state grid receives several
RMs, it donates its loads according to the order of distance, the
closer having priority. The entire procedure contains several
synchronized iterations to terminate.

Figure 3 shows the first two processing procedures of the
local Hungarian algorithm applied to the example in Figure 1.
(a) shows the difference between the load of each grid and the
global average, Δ+ or Δ− of each grid. The initial TTL is 1,
then it is increased by 1 each iteration. The grids shown by

Local Hungarian Algorithm
(Initialization) Each grid decides its state and the loads under
(Δ−) or over (Δ+) the average.

• For a give state grid,

1) sends out a IM with TTL=1, including its Δ;

a) If gets RMs, sends out loads according to the
distance order and updates loads state and Δ;

2) If in give state and TTL is smaller than the diameter
of the network, expands TTL and goes to (1);

• For a take state grid,

1) If receives IMs, picks the closest ones to reply;
2) If receives loads, updates its loads state and Δ.

• For a neutral grid,

1) If there is a IM, decreases its TTL; If TTL is not
0, forwards the IM, drops it otherwise.

the bold boxes donate loads in the first iteration, and the grids
with circles are receiving loads. (b) is the resultant network
after iteration 1, and (c) is after iteration 2. After 5 iterations,
all the loads are balanced. For this single example, the total
moving distance of SMART is 63, the Hungarian method is
54, and the local Hungarian method is 56. The number of
moves of SMART is 63, the Hungarian method is 26, and the
local Hungarian algorithm is also 26. Both Hungarian method
and local Hungarian algorithm achieve a complete balanced
state, while SMART does not guarantee it. In addition to its
huge computation consumption, the Hungarian method needs
large storage space, which is O(N2), where N is the number
of nodes. In the other two method, storage space is O(n2).

C. Discussions

Timer of the give/take state grids. Each give state grid keeps
a timer for IM sending. After an IM is sent out, the timer is set
to 2×TTL. The take grid also set the timer of TTL, in which
IMs of TTL hops away could arrive. When the timer expires,
the take grid makes decision according to all received IMs
and sends back RMs. When the timer of a give grid expires,
it schedules the loads donation according to all received RMs
and sends out loads.

Threshold for state decision. Since the exact global average
load may not be an integer, there needs a threshold δ to
determine states of grids. That is, if the difference between
the loads of the grid and the average is larger than δ, then it is
in the give/take state. When δ is set to 0.5, its smallest value,
the resultant network will be absolutely balanced, where the
difference between any two grids does not exceed 1. However,
this may cause extra large communication overhead.



Expansion speed of search range. When the give state grid
increases its TTL, it has two options, the linear or exponential
expansion. Higher expansion speed needs fewer iterations but
more overheads when take and give grids are close to each
other, that is, the original sensor distribution is relatively
balanced. If local matching is of large possibility in the
network, lower expansion speed can achieve small overhead
since most searches stop at relatively small ranges.

Termination condition. In the previous section, we use “not
in give state or search range larger than the diameter” as the
termination condition of the local algorithm. In fact, after the
algorithm terminates, the system may not achieve the absolute
balance. This is because confliction may occur. This case is
common especially when the search expansion is fast. To
achieve the absolute balance, we can change the termination
condition to “not in give state” and search range stays constant
after it reaches the diameter.

Network topology. The proposed Hungarian method and local
solution can also be applied to topologies other than the mesh
structure. Sensors can be grouped into clusters using any
clustering algorithm. Each cluster is viewed as a grid in the
mesh structure. The only difference is that each cluster may
have up to 6 neighbor clusters in any direction.

IV. PROPERTIES

In this section, we discuss the performance metrics of the
proposed local solution, the approximation ratio of the solution
in terms of the total moving distance.

To calculate the bound of the total moving distance in the
worst case, we have to find the worst case. Figure 4 is the
case we provide for analysis, where circles with + indicate
give state grids and circles with − are take grids. We set d to
be the distance and e is a very small number. We also assume
that Δ is 1 for every grid. (a) shows the most simple case.
Since the middle two grids have a smaller distance, they may
match to each other in the first iteration, and the other two
grids match. This yields a total moving distance of 4d − 2e.
Obviously, in the optimal way, the first two grids match and the
last two grids match, which leads to a total moving distance of
2d. This lay out can be replicated as in (b). Again, the middle
two grids match to force the first and the last grids match.
Here, the moving distance is 14d−8e while the optimal result
is 4d. We can repeat the replication process as in (c).

If we denote the segment in Figure 4 (a) as the unit segment,
f(k) as the length of segment k, and T (k) as the moving
distance in segment k using the local solution, we have that:

f(k) = 3k+1d − 3k+1 − 1
2

e

The total moving distance in segment k is the moving
distance in the two k − 1 segments without the final move

−+ +

+ + + +

(a)

(b)

(c)

0: d−ed d

3d−2e1: d−ed d d−ed d

f(k−1) f(k−1)f(k−1)−ek:

−

− − − −

Fig. 4. Illustration of the worst case lay out. (a) The unit segment, (b)
segment 1, and (c) segment k.

(the first and last grids match), the middle two grids match,
and the first and last grids match. Thus we have that:

T (k) = (2 × 3k+1 − 2k+1)d − (3k+1 − 1)e

The optimal result in segment k is Dopt(k) = 2kd. If we
assume that the number of deployed sensors is N , and they
are deployed according to the worst case scenario, we have
that k = lg N − 2. Thus, the approximation ratio in terms of
the number of sensors is:

R =
T (k)

Dopt(k)
= Θ(

N lg 3

lg N
)

.
This case, which may not be the worst case, shows that there

is no constant bound. Therefore, there is no constant bound
for the total moving distance in the worst case.

However, we conjecture that the local solution does have a
constant probabilistic bound. That is, its expected total moving
distance is a constant times the minimal moving distance in
random sensor networks. A rigorous proof is lacking due to
the complexity of an authentic probabilistic model. Instead we
shed some insights with a simplified model.

In the simplified model, we consider give (take) state grids
with Δ = 1 and call them givers (takers). Assume N givers
and N takers are evenly distributed, such that any square
region of side 2d + 1 contains roughly Nd = (2d + 1)2N/A

givers and Nd takers, where A is the area of the sensor
network. In addition, givers (takers) are densely deployed such
that Nd ≥ 1 in all cases.

In each iteration of the local solution (TTL = d), the
probability that each giver does not receive a reply from a
nearby taker is pd = (1− 1

Nd
)Nd < e−1. When the TTL value

increases from 1 to D, the expected total moving distance is

D∑

d=1

[dN(1 − pd)
d−1∏

i=1

pi] < N

D∑

d=1

d

ed−1
< cN

where c = ( 1
1−e−1 )2. As the minimal total moving distance

is at least N , the average total moving distance of the local
solution is bounded by c times that of the optimal solution.
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Fig. 5. Balance degree with difference iteration number in Local Algorithm
(N = 9000, n = 30).
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Fig. 6. Message cost with difference iteration number in Local Algorithm
(N = 9000, n = 30).

V. SIMULATION

In this section, we present the results of our simulation of
the proposed localized movement-assisted sensor deployment
method (Local), and the comparison with the Hungarian based
optimal method (Hungarian), and the SMART.

A. Simulation environment

All approaches are tested on a custom simulator. We set up
the simulation in a 5, 000×5, 000 monitoring area. Sensors can
be deployed in this area following a given distribution, random
distribution (Random) where each sensor randomly selects a
position in the area or clustered distribution (Clustered), where
sensors are deployed to form one or several clustered areas
of different sizes and different clustered degree. The tunable
parameters are: (1) The number of grids n × n. We use 10
and 30 as its values. (2) The number of sensors N . We vary
N from 100 to 1000 and 900 to 9000 in small and large scale
simulations, respectively. (3) The expansion speed of TTL. We
increase TTL at a linear and an exponential speed, respectively.
When using linear rate, we use 1 and 3 as the step value. (4)
The state decision threshold Δ. We vary the value of Δ from
0.5 to 5 to check the performance of Local.

The performance metrics are (a) deployment quality and
(b) cost. Deployment quality is shown by the balance degree
measured by the standard deviation of sensor numbers in
all the grids, and also the percentage of balanced grids.
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Fig. 7. Percentage of balanced grids with difference iteration number in
Local Algorithm (N = 9000, n = 30).
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Fig. 8. The number of iterations for different Δ in Local algorithm (N =
9000, n = 30).

Deployment cost is measured in terms of overall moving
distance and also, to a less extent, the number of total moves.
The number of messages sent and the iteration number is also
examined.

B. Simulation results

We first analyze the performance of Local in a large scaled
network, where n is 30 and N is 9000. Figure 5 shows the
balance degree of the network after each iteration, d = 0
represents exponential TTL expansion, and d = 1, 3 are
linear expansion with step 1 and 3. (a) is Random, and (b)
is Clustered distribution with 3 clustered area. We can see
that when the increase of TTL is slower, the more balanced
resultant network is achieved, but it takes more iterations to
get the stable state. When TTL is 1, and the global average
load is an integer, a balanced state can be achieved finally,
where almost every grid has the same loads.

Figure 7 is the percentage of balanced grids after each
iteration. (a) is Random, and (b) is Clustered distribution.
The results are similar with those of Figure 5. The slower
the increase of TTL, the more grids achieve balanced state
finally, but the lower the speed to balance them, especially
in Clustered distribution. We can also see that in most cases,
the match procedure stops before the search range reaches the
maximum value, the parameter of the network. We can see
that in Random distribution, nearly 90% grids are balanced



within 10 iterations.
Figure 6 shows the number of messages sent in the system

after each iteration. We can see that the message cost is
the lowest when d = 1, and the highest when d = 3.
This is because although exponential expansion may cause
lots of messages in each iteration, less iterations are needed
to increase the TTL to cover the whole area. In Random
distribution with TTL=1, each grid sends out less than 6
messages in average.

Figure 8 shows the effect of different Δ value. We can
see that for linear expansion TTL, the larger the Δ, the less
iterations needed in Random distribution. This decrease in the
number of iterations is not significant in Clustered distribution.
This is because more grids have large Δ+ or Δ−. Although
Δ is large, still a certain number of iterations are necessary
to achieve balance.

Then we compare the performance of Local with Hungarian
and SMART, with d = 1 and Δ = 0.5 in a small scale network
(n = 10). Figure 9 shows the moving distance and the number
of moves in Random and Clustered distributions. We can see
that Hungarian has the smallest moving distance. SMART
has the largest. Although the difference between them is not
large, Local is still better than the other two, since Hungarian
is global and SMART cannot achieve the complete balanced
state. The simulation results of [5] and [1] show that the final
balance degree of the SMART algorithm is around 1 in random
distribution and larger in clustered distribution. The number of
moves of Local is the same with Hungarian, which is smaller
than that of SMART.

Simulation results can be summarized as follows: (1) The
proposed Local algorithm has better performance than the
SMART algorithm in terms of moving distance, the number of
moves, and resultant balance degree. (2) The Local algorithm
has approximate performance with the Hungarian method,
which is a global algorithm and much more energy consuming.
(3) In Local algorithm, different TTL expansion methods
achieve different performance. The slowest linear expansion
method achieves a complete balanced state, but needs more
iterations. In most cases, the matching process stops before
the search range reaches the whole network.

VI. CONCLUSIONS

We present a local solution to the movement-assisted sensor
deployment problem. This solution is implemented using local
network information only. The simulation results show that the
local solution has approximate performance with the optimal
global solution, and is better than the SMART algorithm.
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