
Scan-Based Movement-Assisted Sensor Deployment
Methods in Wireless Sensor Networks∗

Shuhui Yang†, Minglu Li‡, and Jie Wu†
†Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

‡Department of Computer Science and Engineering
Shanghai Jiao Tong University

Shanghai, P. R. China

Abstract

The efficiency of sensor networks depends on the coverage of the monitoring area. Although

in general a sufficient number of sensors are used to ensure a certain degree of redundancy in cov-

erage, a good sensor deployment is still necessary to balance the workload of sensors. In a sensor

network with locomotion facilities, sensors can move around to self-deploy. The movement-

assisted sensor deployment deals with moving sensors from an initial unbalanced state to a bal-

anced state. Therefore, various optimization problems can be defined to minimize different param-

eters, including total moving distance, total number of moves, communication/computation cost,

and convergence rate. In this paper, we first propose a Hungarian algorithm based optimal solu-

tion, which is centralized. Then a localized Scan-based Movement-Assisted sensoR deploymenT

method (SMART) and its several variations are proposed that use scan and dimension exchange

to achieve a balanced state. An extended SMART is developed to address a unique problem

calledcommunication holesin sensor networks. Extensive simulation has been done to verify the

effectiveness of the proposed scheme.

Keywords: Dimension exchange, Hungarian method, load balance, movement-assisted, scan,

sensor deployment, wireless sensor networks.

∗This work was supported in part by NSF grants ANI 0073736, CCR 0329741, CNS 0422762, CNS 043533,
EIA 0130806, CNS 0531410, CNS 0626240, and national grand fundamental research 973 program of China, No.
2006CB303000. Emails: syang1@fau.edu, li-ml@cs.sjtu.edu.cn, jie@cse.fau.edu.

1

1 Introduction

Wireless sensor networks (WSNs) [1, 2] combine processing, sensing, and communications to form

a distributed system capable of self-organizing, self-regulating, and self-repairing. The application of

WSNs ranges from environmental monitoring, to surveillance, to coordinated target detection. The

efficiency of a sensor network depends on the coverage of the monitoring area. Although, in general,

a sufficient number of sensors are used to ensure a certain degree of redundancy in coverage so that

sensors can rotate between active and sleep modes, a good sensor deployment is still necessary to

balance the workload of sensors. Mobile sensors [3] can be exploited to provide a re-distribution.

After an initial random deployment of sensors in the field, themovement-assisted sensor deploy-

ment [4] can be applied, which uses a potential-field-based approach to move existing sensors by

treating sensors as virtual particles, subject to virtual forces. Basically, the movement-assisted sensor

deployment deals with moving sensors from an initial unbalanced state to a balanced state. There-

fore, various optimization problems can be defined to minimize different parameters, including total

moving distance, total number of moves, communication/computation cost, and convergence rate.

More recently, some extended virtual force methods, such as in [5] and [6] which are based on

disk packing theory [7] and the virtual force field concept from robotics [8], are proposed. These

methods simulate the attractive and repulsive force between particles. Sensors in a relatively dense

region will explode slowly according to each other’s repulsive force and head toward a sparse region.

In this way, the whole monitoring area can achieve an even distribution of sensors. However, these

methods may have a long deployment time since sensors move independently and they may even fail

if all the sensors can achieve force balance but not load balance.

We assume that sensors are deployed randomly into the square monitoring area without consider-

ing of any physical obstacles. Then if we partition the monitoring area into many small regions, and

use the number of sensors in a region as its load, the sensor deployment problem can be viewed as a

load balance problem in traditional parallel processing, where each region corresponds to a processor

and the number of sensors in a region corresponds to the load. The sensor deployment resembles the

traditional load balance issue in parallel processing with several key differences:

• Different objectives. In traditional load balancing, total moving distance rather than the number

of moves is important, whereas in sensor networks, the number of moves is also important

because of relatively heavy energy consumption to start or stop a move.

2

• Different technical issues. One unique issue in sensor networks is the communication hole (or

simply hole) problem where some regions of the network have no deployed sensors. Since there

is no centralized control, the network can be partitioned. Therefore, the network needs to be

connected first before load balancing.

In this paper, we first provide an optimal solution in 2-D meshes. This solution is based on the

classic Hungarian method, but requires global information without considering sensor network con-

nectivity. We then propose a method using a 2-dimensional (2-D) scan called Scan-based Movement-

Assisted sensoR deploymenT method (SMART). A typical scan operation [9] involves a binary opera-

tor⊕ and an ordered set[w0, w1, ..., wn−1] where eachwi represents the number of sensors in a region,

and returns the ordered set[w0, (w0 ⊕ w1), ..., (w0 ⊕ w1⊕, ...,⊕wn)]. In this paper, we consider only

integer addition and boolean AND operations for scan. Using integer addition, the scan operation will

return partial and total sum of the number of sensors. Since each region position andn are known,

average load information can be easily calculated and distributed as can be the overload/underload

situation of each ordered subset corresponding to a prefix of the ordered set.

In SMART, a given rectangular sensor field is first partitioned into a 2-D mesh through clustering.

Each cluster corresponds to a square region and has a clusterhead which is in charge of bookkeeping

and communication with adjacent clusterheads. A hybrid approach is used for load balancing, where

the 2-D mesh is partitioned into 1-D arrays by row and by column. Two scans are used in sequence:

one for all rows, followed by the other for all columns. Within each row and column, the scan

operation is used to calculate the average load and then to determine the amount of overload and

underload in clusters. Load is shifted from overloaded clusters to underloaded clusters in an optimal

way to achieve a balanced state. By optimal, we mean the minimum number of moves and minimum

total moving distance. By a balanced state, we refer to a state with the maximum cluster size (the

number of sensors in a cluster) and the minimum cluster size being different by at most 1.

The communication holeproblem in a 2-D mesh corresponds to a cluster with a cluster size of

zero. Clearly, the scan approach cannot be used in a row or column with holes, since clusterheads

separated by one or more holes cannot communicate with each other to perform a scan operation. In

the extreme case, the 2-D mesh may be disconnected as shown in Figure 1, where the number in each

circle corresponds to the cluster size, and sensors in each cluster can communicate with sensors in

adjacent clusters as well as sensors in the same cluster. In Figure 1, the network is partitioned into two

components. Our solution to the hole issue is based on planting a “seed” from a non-empty cluster

3

(3)

0 0k 0 0 0

k 1 1

k 0

0

k 0

0

k

0

0

(1)

(1)

(1)

(1) (1)

(1) (1)

(2) (2)

(2)

(1) (1)

(2)

(2) (2)

(3) (3) (3) (3) (3)

(4) (4) (4) (4) (4)(4)

Figure 1: A sample clustered sensor network that corresponds to a 2-D mesh.

to an adjacent empty cluster. Various solutions are proposed in such a way that this seed-planting

process (also called pre-processing) can be easily integrated with the normal 2-D scan process to

achieve a good balance of various objectives. The network can use some newly developed location

services [10, 11] to estimate the locations of sensors; thus no GPS service is required at each sensor

and the corresponding overhead is avoided. For example, locations of sensors can be determined by

using sensors themselves as landmarks [12].

The contributions of this paper are as follows: (1) We develop an optimal load balance solution

based on the classic Hungarian method that achieves minimum total moving distance, and use it as a

baseline to check the performance of other approaches. (2) We systematically discuss the similarity

and difference between the traditional load balancing in parallel processing and movement-assisted

sensor deployment in sensor networks. (3) We propose a new hybrid approach called SMART, to-

gether with several variations, that combines some desirable features of both local and global ap-

proaches while overcoming their drawbacks. (4) We identify a unique technical problem called com-

munication hole and provide solutions to it. (5) We systematically study different trade-offs among

various contradictory goals. (6) We conduct extensive simulations and compare results with several

existing local movement-assisted sensor deployment methods.

2 Preliminaries and Related Works

2.1 Load balance in multiprocessor systems

Extensive work has been done in the parallel processing community on load balancing. In general,

load balance algorithms can be classified as local (such as iterative nearest neighbor exchanging [13,

4

14]) and global (such as direct mapping [15, 16]). The global approach relies on global information

which is usually not scalable. Local algorithms can be either deterministic or stochastic. Diffusion and

dimension exchange are two widely used local deterministic methods. Both algorithms are iterative

and are based on nearest neighbor exchange. Once all nodes complete one iteration, it is called a

sweep. Although no information on load distribution is needed in local methods, iterative methods

incur a significant number of rounds (moves in sensor networks).

In the diffusion method, the balancing procedure is divided into a sequence of synchronous steps.

At each step, each nodei interacts and exchanges load with all its neighbors,adj(i). A diffusion

parameter decides the portion of the excess load to be diffused between nodesi and each of its neigh-

bors. Xu and Lau [17] proved that the optimal uniform diffusion parameter that leads to the fastest

convergence for 2-D meshes is 1/4.

In the dimension exchange method, the edges of the graph are colored such that no two adjacent

edges have the same color. A “dimension” is then defined as a collection of edges with the same color.

In Figure 1, all edges are grouped into four dimensions. Edges with label(i) belong to dimension

i (i = 1, 2, 3, 4). At each iteration, one particular color (dimension) is considered and every two

adjacent nodesi andj connected by an edge with the selected color exchange their load according to

an exchange rate. Again, Xu and Lau [17] showed the optimal uniform exchange rate for2k1 × 2k2

2-D meshes (where both row and column numbers are even).

2.2 Movement-assisted sensor deployment

The sensor placement issue has been researched recently [18], [19], [20]. Random placement of sen-

sors may not satisfy the deployment requirement due to a hostile deployment environment. Therefore,

the movement-assisted sensor deployment method is developed. Most existing movement-assisted

protocols rely on the notion of virtual force to move existing sensors from an initial unbalanced state

to a balanced state. These protocols are similar to nearest neighbor exchanging in load balancing.

Sensors are involved in a sequence of computation (for a new position) and movement.

In [6], Zou and Chakrabarty proposed a centralized virtual force based mobile sensor deployment

algorithm (VFA), which combines the idea of potential field and disk packing [7]. In VFA, there is

a powerful clusterhead, which will communicate with all the other sensors, collect sensor position

information, and calculate forces and desired position for each sensor. In VFA, the distance between

5

two adjacent nodes when all nodes are evenly distributed is defined as a threshold to distinguish

attractive or repulsive force between two nodes. The force between two nodes is zero if their distance

is equal to the threshold, attractive if less than and repulsive if greater than. The total force on a node

is the sum of all the forces given by other sensors together with obstacles and preferential coverage in

the area. The clusterhead executes VFA and directs each sensor’s movement. VFA has the drawbacks

of centralized algorithms, single point failure, bottleneck of processing, and less scalability.

In [5], Wang, Cao, and La Porta developed a novel distributed self-deployment protocol for mobile

sensors. They used Voronoi diagrams [21] to find coverage holes in the sensor network, and proposed

three algorithms, VEC (Vector-based), VOR (Voronoi-based), and Minimax, to guide sensor move-

ment toward the coverage hole. When applied to randomly deployed sensors, these algorithms can

provide high coverage within a short time and limited moving distance. If the initial distribution of

the sensors is extremely uneven, disconnection may occur, thus, the Voronoi polygon constructed may

not be accurate enough, which results in more moves and larger moving distance. They adopted the

optimization of random scattering of some sensors to cover holes. The termination condition of their

algorithms is coverage instead of load balance. In [22], they further explored the motion capability of

sensors for relocation to deal with sensor failure or respond to new events. The algorithm contains two

phases. The first one is redundant sensor location, and the second is redundant sensor relocation. A

grid-quorum solution was proposed to quickly locate the closest redundant sensors to the target area,

where a sensor failure occurs. In their recent work [23], they designed a virtual movement scheme for

the deployment protocol to reduce the moving distance of sensors. To our best knowledge, our work

is the first to exploit scan-based movement assisted solution for sensor redistribution.

Some recent work focuses on sensors with limited mobility, which is motivated by the DARPA

project called Intelligent Mobile Land Mine Units (IMLM) [24]. In IMLM, the mobility system is

based on a hopping mechanism. Chellapan, Bai, Ma, and Xuan [25] studied a special hopping model

in which each sensor can flip (or flop) only once to a new location. In addition, the flip distance is

bounded. The deployment problem is then formulated as a minimum-cost maximum-flow problem.

3 An Optimal Solution

This section starts with an optimal solution for 2-D meshes based on the classic Hungarian method.

Although due to its potential drawback of centralization, this optimal solution is not practical, espe-

6

cially when the WSNs are not connected, we can use it as a baseline to examine the performance of

other proposed methods.

3.1 Hungarian method

Let us consider theedge weighted matching problemin a complete bipartite graphKm,m (m nodes on

the left side andm on the right) with numbers associated with the edges called weights. The objective

is to find a perfect matching (ofm pairs), such that the sum of the weights of edges in the matching is

maximum (or minimum). A matching is to findm edges to connect nodes on the left side to those on

the right, and each node has only one edge.

A naive approach to solve the matching problem is to enumerate allm perfect matchings and find

an optimal one among them. A better solution called the Hungarian method1 exists. The following is

the algebraic formulation for the matching problem. We letxij, (i, j = 1, . . . , m), be a set of variables.

m is the number of nodes in the node sets of the complete bipartite graphB = (V, U,E), whereV , U

are two node sets,E is the edge set.xij = 1 means that the edge(vi, uj) is included in the matching,

whereasxij = 0 means not.cij is the weight of edge(vi, uj). An optimal solution is to:

Minimize Σijcijxij

subject to
∑

j=1 xij = 1 i = 1, . . . , m
∑

i=1 xij = 1 j = 1, . . . , m

To use the Hungarian method to load balance in WSNs, we need to first convert the 2-D mesh

to a complete bipartite graph using the follow procedure: (1) Calculate the global averagev̄ and

determine “give”, “take”, and “neutral” state of each grid. (2) A node and edge weighted bipartite

graph is constructed, where “give” and “take” grids appear at the left and right hand sides of the graph,

respectively. The node weight corresponds to amount of overload and underload, and the edge weight

represents the distance between the “give” and “take” grids in a matching pair. (3) An edge weighted

perfect bipartite graph is derived by expanding each node with weightk to k “clone” nodes. The edge

weight of clone nodes will inherit from the original nodes. It is obvious that the total sensor moving

distance is minimized. The total number of moves is also minimized since each sensor, if necessary

to move, only move once to its destination.

1In honor of the Hungarian mathematicians D. Kőnig and E. Egerv́ary who developed it.

7

(a)

1 3

3

4

1

2

1

1

M[1,2]

M[3,2]

M[5,2]

M[2,3]

M[4,3]

3
1

3

1

1

M[3,3]

M[3,5]

M[5,5]

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

3
1

1

1

3

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(c)(b)

Figure 2: (a) The node and edge weighted bipartite graph of Figure 3 with “give” grids at the left-hand

side and “take” grids at the right-hand side. (b) The edge weighted complete bipartite graph of (a)

and (c) the optimal solution.

3.2 Examples and analysis

In Figure 3, the global average in case is 5. There are three overloaded nodes and five underloaded

nodes.M [3, 3] = 3 means overloaded by 3 units andM [1, 2] = 1 is underloaded by 1 unit. The edge

weight is the Manhattan distance between two end nodesM [i, j] andM [i
′
, j

′
]. That is,∆x + ∆y =

|i− i
′|+ |j− j

′|2. For example, the edge connectingM [3, 3] to M [1, 2] has a weight of 3. In Figure 2

(a), the node and edge weighted bipartite graph shows weights of all edges connectingM [3, 3] to

underloaded nodes. In Figure 2 (b), the edge weighted complete bipartite graph of (a) is shown, where

each node (overloaded or underloaded) with weightk hask “clone” nodes. For example,M [3, 3] has

three clone nodes labeled from 1 to 3. The Hungarian method is then applied to (b) and the optimal

result is shown in (c). The optimal result shows thatM [5, 5] (now with four clone nodes) needs to

move one sensor to each ofM [1, 2], M [5, 2], M [2, 3], andM [4, 3].

There are several polynomial implementations for the Hungarian method. Our implementation

is based on Munkres’ method [26]. Another implementation [27] solves the problem inO(m3),

exploiting the solution to the maximum flow problem. The cost of implementing the Hungarian

method for load balance in WSNs isO(m3), wherem is the amount of overloads (underloads) which

2The general distance between two points is defined as((∆x)k + (∆y)k)1/k. Whenk = 2, it is Euclidian distance,

and whenk = 1, it is Manhattan distance.

8

i

55555

5

5

5

5

5

5

5

5

5

5 5

5 5

5 5

5 5 5 55

555

5

4

5

5

5

2

5

5

5 4

5

5 6 55

55555

5

4

5

5

4

5

5

4

5

5 5

4 4

5 5

6 6 6 669

5 5

8 34

5

(a) (b) (c)
1 2 3 4 5

5

4

3

2

1

j

Figure 3: An ideal case for SMART.

is bounded by the number of sensors. Usually, the number of sensors is one or two magnitudes

higher than the number of grids (n). A BS (base station) is needed to connected to the WSN, serving

as the central controller for information collection and algorithm execution. Then BS informs all

clusterheads about the sensor movement via direct or multi-hop communication.

4 SMART

4.1 Basic ideas

Unlike the optimal solution, SMART is a hybrid of the local and global approach. Its extension

(discussed in then next section) can be used in disconnected WSNs. The sensor network is partitioned

into ann × n 2-D mesh of clusters (the method can be easily extended to the generaln × m 2-D

mesh). Each cluster covers a small square area, and is controlled by a clusterhead. The role of each

clusterhead can be rotated within the cluster. Each clusterhead, in charge of communication with

adjacent clusters, knows the following information: (1) its cluster’s position,i, in the 2-D mesh (via

GPS) and (2) the number of sensors,wi, in the cluster.

Two rounds of balancing are used with one for each dimension, first row, then column. As shown

in Figure 3, after the first round, all rows are balanced in (b); after the second round, all columns are

balanced, as is the whole area. Although balancing within a row or column can be done either locally

such as iterative nearest neighbor interaction or globally such as direct mapping, SMART relies on an

extended scan method.

9

4.2 Clustering

Since each sensor node knows its cluster id,i, sensors in the same cluster elect a unique clusterhead

based on a pre-defined priority. Assume each cluster covers anx × x square. To ensure the square

is covered whenever there is a sensor in the region, the sensing ranger1 should be set to
√

2x (the

diagonal length of the square). To support transmission from non-clusterhead to clusterhead, the intra-

cluster transmission range should be set to at least
√

2x (also denoted asr1). To ensure the clusterhead

can communicate with clusterheads in four adjacent clusters, the inter-cluster transmission ranges

of each clusterhead should be at least the diagonal of the rectangle constructed from two adjacent

squares. That is,r2 =
√

5x. If a sensor does not support two transmission ranges,r2 can be used for

intra-cluster communication.

Generally, the role of clusterhead should rotate among all the nodes in the cluster to achieve

balanced energy consumption and to prolong the life span of each individual node, such as in [28].

Non-clusterheads only need to report their own position and energy to clusterheads using transmission

ranger1, while clusterheads will communicate with neighboring clusters, take over the information

of sensors in its cluster, and direct the movement of sensors.

4.3 Scan

Consider the 1-D array of clusters where cluster id is labelled following the sequence in the linear

line. Again, denotewi as the number of sensors in clusteri. Let vi be the prefix sum of the firsti

clusters, i.e.,vi =
∑i

j=1 wj. vn =
∑n

j=1 wj is the total sum. Clearly,w = vn/n is the average number

of sensors in a balanced state, andvi = iw is the prefix sum in the balanced state. Note thatw is a

real number which should be rounded to an integerbwc or dwe. In a balanced state,|wi−wj| ≤ 1 for

any two clusters in the network.

The scan algorithm works from one end of the array to another (first scan) and then from the other

end back to the initial end (second scan). The direction of the first sweep is calledpositive(with

increasing order of cluster id) and that of the second sweepnegative(with decreasing order of cluster

id). The first sweep calculates the prefix sumvi, where each clusterheadi determines its prefix sumvi

by addingvi−1+wi and forwardingvi to the next cluster. The clusterhead in the last cluster determines

vn andw = vn/n (load in a balanced state) and initiates the second scan by sending outw. During

this scan, each clusterhead can determinevi = iw (load of prefix sum in a balanced state) based onw

10

Table 1: The scan process on the third row of Figure 3.

i 1 2 3 4 5

wi 5 4 8 3 5

vi 5 9 17 20 25

vi 5 10 15 20 25

that is passed around and its own cluster positioni.

Knowing the load in the balanced state, each cluster can easily determine its “give/take” state.

Specifically, whenwi − w = 0, clusteri is in the “neutral” state. Whenwi − w > 0, it is overloaded

and in the “give” state; and whenwi − w < 0, it is underloaded and in the “take” state. Each cluster

in the give state also needs to determine the number of sensors (load) to be sent to each direction:

w→
i for load in the positive direction (or simply give-right) and←wi for load in the negative direction

(give-left). Based on the scan procedure, we have

w→
i = min{wi − w, max{vi − vi, 0}} (1)

←wi = (wi − w)− w→
i (2)

The 2-D scan process involves a row scan followed by a column scan as shown in Figures 3 (b)

and 3 (c), respectively. Table 1 shows details of the row scan on the third row wherei is the column

number. Only the cluster at columns 3 is in the “give” state, since its load is higher thanw = 5. For

column 3,w→
3 = 2 (the load will be assigned to column 4, the actual schedule will be discussed later)

and←w3 = 1 (it will be assigned to column 2). Similarly, a set of conditions can be given for the

“take” state:w←
i for take-right and→wi for take-left. It is clear that

→wi = min{w − wi, max{vi−1 − vi−1, 0}} (3)

w←
i = (w − wi)−→ wi (4)

In the subsequent discussion, we use→wi for both the number of take-left units and the take-left

state of clusteri. The same convention is used for the other three notations. The distinguishing feature

of scan is its simplicity, where each clusterhead ini passes only one package in each sweep, prefix

sumwi in one sweep followed by global averagew in the second sweep.

11

4.4 Properties of Scan

An optimal load balance scheduling based on scan should satisfy the above four conditions related

to give-right, give-left, take-right, and take-left for each cluster. By optimal, we mean the minimum

number of moves and minimum total moving distance. The following theorem shows that any vio-

lation of the conditions will result in the increase of overall moving distance and/or total number of

moves to reach a load balanced state.

Theorem 1: Any violation of the four conditions on give and take state of each cluster will result in

the increase of overall moving distance and/or total number of moves to reach a load balanced state.

Proof: We consider four types of violation: take state changed to give state, give state changed to

take state, take-right (take-left) changed to take-left (take-right), and give-right (give-left) changed to

give-left (give-right).

Suppose clusteri’s state is changed from take to give and one unit is sent to clusterj. To ensure

load balancing, that one unit at clusteri will be compensated by another unit from clusterk (i.e., k

gives one unit back toi). A better scheme would bek giving one unit directly toj to save one move,

and shorten the distance ifj andk are at the same side ofi in the 1-D array.

Suppose clusteri’s state is changed from give to take and one unit is given from clusterj. To

ensure load balancing, that one unit will be given away to clusterk. It would be better forj to give

one unit directly tok to save one move, and shorten the distance ifk andj are at the same side ofi.

When clusteri’s state mixes give-right with give-left, we assume that one unit is moved fromw→
i

to←wi (similarly for←wi to w→
i). We show that this schedule will generate a longer moving distance.

Suppose this unit is moved fromi to i
′
(1 ≤ i

′
< i), based on the balanced state requirement, one unit

in a clusterj in region[1..i − 1] needs to be moved out to clusterj
′

with i < j
′ ≤ n. We consider

swapping these two units ati andj. To compare moving distance between these two cases (before

and after the swap), we consider two situations shown in Figure 4 as follows

1. Wheni
′ ≤ j < i, we have|i− i

′|+ |j − j
′| > |j − i

′|+ |i− j
′|.

2. When1 ≤ j < i
′
, we have|i− i

′|+ |j − j
′| = |i− i

′|+ |j − i
′|+ |i′ − j| > |j − i|+ |i− j|.

In both cases, the moving distance before the swap|i − i
′| + |j − j

′| is longer than that of after the

swap.

12

j

���������������������� n1 i’ i

j j’

 (a)

���������������������� n1 i’ i

j’

 (b)

Figure 4: Two cases for mixing up give-right with give-left.

j

�� n1 i

 (b)

n1 i

j j’

 (a)

i’ i’

j’

Figure 5: Two cases for mixing up take-right with take-left.

When clusteri’s state mixes take-right with take-left, we again assume that one unit is moved from
→wi to w←

i (similarly for w←
i to →wi). Suppose this unit is moved fromi

′
to i (i < i

′ ≤ n), based

on the balanced state requirement, one unit in a clusterj in region[1..i − 1] needs to be moved out

to clusterj
′
with n ≥ j

′
> i. We consider swapping these two units ati andj. To compare moving

distance between these two cases (before and after the swap), we consider two situations shown in

Figure 5 forj
′ ≤ i

′
andj

′
> i

′
. Following the similar argument as in the above case, the moving

distance before the swap|i− i
′|+ |j − j

′| is longer than that of after the swap. 2

The following theorem shows that when four conditions are met, overall moving distance is inde-

pendent of the actual schedule.

Theorem 2: When take-right (take-left) states get load from give-left (give-right) states, the overall

moving distance is independent of the actual schedule.

Proof: Let’s consider schedules for all take-right states that get load from give-left states. The take-

left states getting load from give-right states case can be argued in a similar way. Starting from cluster

1 and checking towards clustern (i.e., along the positive direction), for each unit of underload in a

take-right statei, assign one unit of load from the closest give-left statei
′

(i.e., a cluster in a give-

left state with minimum id). Now we show that all other assignments can be converted to the above

schedule without changing the total moving distance. Suppose in the above state, the unit toi comes

from a non-closest give-left statej
′

and the unit fromi
′

is assigned to a take-right statej where

i ≤ j ≤ i
′
. By swappingi

′
with j

′
, total moving distance remains the same, and the one unit ini now

13

(a)

i

j

(b)

j’

i’

i

j j’

i’

Figure 6: Swapping ofi
′
andj

′
without changing the total moving distance: (a) before the swap, and

(b) after the swap.

comes fromi
′
(see Figure 6). This kind of swap can be done iteratively. 2

4.5 An optimal scan in 1-D arrays and its extension in 2-D meshes

In this subsection, we propose a simple sender-initiated optimal load balance algorithm for 1-D arrays.

The unique property is that the algorithm starts from each cluster in give state (give-left and give-right)

in parallel without the need to be concerned with the detail of take state of other clusters. Supposei

is in a take state wherēw − wi > 0, then we do not distinguish take-right from take-left.

Sender-Initiated Optimal Load Balance in 1-D Arrays

1. For each clusteri in give state, the clusterhead sendsw→
i units to its right neighbor and sends

←wi units to its left neighbor.

2. For each clusteri in take state, when the clusterhead senses several bypassing units, it inter-

sects as many units as possible to fill in its “holes”. Unintersected units move along the same

direction.

Theorem 3: The proposed greedy schedule ensures an optimal schedule in 1-D arrays.

Proof: It suffices to show the case in Figure 5 is avoided. That is, the two conditions related to take

state are satisfied. Based on the algorithm, when a unit is passed toi from right to left as shown in

Figure 5, it implies that subarray[i...n] is in overloaded state; similarly, when a unit is passed toj
′

from left to right, the subarray[1...j
′
] is in overloaded state. Sincei < j

′
, the array[1...n] as a whole

is overloaded, which corresponds to a contradiction. 2.

14

When the scan procedure is extended from 1-D arrays to 2-D meshes, the scan procedure is applied

twice: once on all rows, followed by once on all columns. This 2-D scan process represents the core

of SMART. However, this approach is no longer optimal in 2-D meshes. For example, consider a

2×2 meshM [1, 1] = 3,M [1, 2] = 1,M [2, 1] = 3, andM [2, 2] = 5. A scan on rows will change load

distribution of the mesh toM [1, 1] = 2,M [1, 2] = 2,M [2, 1] = 4, andM [2, 2] = 4, and a scan on

columns will balance the mesh toM [1, 1] = 3,M [1, 2] = 3,M [2, 1] = 3, andM [2, 2] = 3. A total of

4 moves occur, however, the optimal solution requires only 2 moves fromM [2, 2] to M [1, 2] directly.

Theorem 4: The ratio between the 2-D scan and the optimal solution in terms of the number of moves

is bounded by 2.

Proof: During the 2-D scan, wasted moves occur during the first scan when a (globally) underloaded

clusteri moves the load to another (globally) underloaded clusterj. SupposeL units of load are

moved fromi andj. L units of load forj are necessary, whileL units fori are wasted units. A similar

situation occurs when a (globally) overloaded clusteri moves load to another (globally) overloaded

clusterj. In this case,L units forj are wasted, whileL units for i are necessary. It is easy to follow

that for each wasted move there is a matching necessary move, therefore, the ratio is bounded by2. 2

4.6 Several variations of SMART

In SMART, an “aggressive” approach is used where a local “give” state in a row or column can be

a global “take” state. To avoid this situation, a “conservative” approach can be used to decide local

“give” and “take” state based on global average information.

Besides the prefix sum of the firsti grids in a row (or column) in the positive direction, i.e.,vi =∑i
j=1 wj, another negative direction prefix sum is exploited, wherev′i =

∑n
j=i wj, andv′1 =

∑n
j=1 wj

is the total sum in the row (or column). The negative prefix sum is achieved in the negative sweep

where the average is sending out. Now,wl = vn/n is the average number of sensors in a local

balanced state with respect to the current row (or column).v =
∑n

i=1

∑n
j=1 wij is the global total

sum. Thenwg = v/n2 is the average number of sensors in a global balanced state. We define a third

kind of average aswm = |wg − wl|/2, the mean of global and local balanced state. This average is to

achieve a compromise between conservative and aggressive approaches.

The variation differs from the original SMART in its definition of thresholdw used to determine

15

the “give/take” state. Still, whenwi − w = 0, grid i is in the “neutral” state. Whenwi − w > 0, it

is overloaded and in the “give” state; and whenwi − w < 0, it is underloaded and in the “take” state.

w can be one of three possible choices:wl, wg, andwm. Again,vi = iw is the the prefix sum in the

balanced state under the given thresholdw, andvi
′ = (n− i + 1)w is that of the negative direction.w

should be rounded to an integer.

In the original SMART, the threshold is based on the local average,wl, when “give” and “take”

states are balanced in a row (or column). With a changing threshold, such a balance is no longer

held. That is, there could be more “give” than “take” grids and vice versa. Therefore,w→
i for load in

the positive direction (or simply give-right) and←wi for load in the negative direction (give-left) are

changed as follows: a grid is in “give” state if its value is over the given thresholdw. The amount of

excessive load to be transferred to its right (or left) depends on the amount of underload to its right (or

left) provided that amount does not cause the underload of the current node. More formally, we have

w→
i = min{wi − w, max{v′i+1 − v′i+1, 0}} (5)

←wi = min{(wi − w)− w→
i , max{(vi−1 − vi−1), 0}} (6)

The threshold-based scan approach

1. If w 6= wl, determine global balanced valuewg.

2. Perform a row scan followed by a column scan using the selectedw.

3. If w 6= wl, repeat step (2) usingw = wl.

wg in step (1) can be calculated during step (2). Basically,wg is determined after row and then

column scans. However, in these scans there are no actual sensor movements. Movements occur

oncew is derived fromwg. Step (3) is needed since the result of step (2) cannot guarantee a globally

balanced state. Whenw = wm, one variation of the algorithm is to repeat step (2) a constant (c)

number of times before applying step (3). We use SMART(g), SMART(l), and SMART(m, c) to

represent the threshold-based scan that uses global average, local average (the original SMART), and

mean of global and local average, respectively.c in SMART(m, c) corresponds to the number of

iterations of step (2).

If the total number of sensors is unknown, more information propagation is necessary. After the

last cluster of each row gets the total number in its row, one more scan is generated in the last column

16

to achieve the global average. Then a scan in the negative direction in the column is conducted to

distribute the average to each row.

5 Extended SMART

5.1 Simple solutions

The 2-D scan discussed previously works only when there is no hole, otherwise, certain rows and

columns may not be connected. In the worst case, the 2-D mesh may be disconnected. A pre-

processing is needed to plant “seeds” to holes at each 1-D scan and these seeds will serve as cluster-

heads in these holes.

Planting seeds in holes in an asymptotically optimal way is a non-trivial task. Suppose we want

to optimize total moving distance, the number of moves, and communication latency (where each se-

quential neighbor communication is considered one step). The total moving distance should beO(n2)

(as in the case of the first row of Figure 1), the number of moves should beO(n), and communication

latency should beO(n).

A conservative approach could be sending out one seed at a time to an adjacent empty cluster.

This will work for the case of the third row of Figure 1 wherek is a number larger than 5 and the

direction is from left to right. However, this approach does not work well for the case of the first

row, since the frontier node, the clusterhead of the first nonempty cluster in the expansion direction,

needs to communicate with the left most node after each probing and expansion. The corresponding

communication latency is2
∑n−1

i=1 i = O(n2). Note that if the moving distance is a dominating factor,

rather than the communication latency, this is still an acceptable solution.

In an aggressive approach, each cluster that has a sufficient number of sensors (seeds) can send

out multiple seeds to cover the rest. This approach certainly works for the case of the first row, but

fails for the case of the third row. In this case, the total moving distance would be(n − 1)2 + (n −
3)2 + ... + 32 + 12 = O(n3) since clusters in give state can initiate the process simultaneously. Also

the number of moves is(n− 1) + (n− 3) + ... + 3 + 1 = O(n2).

The simple recursive doubling does not work either for the case of the second row, where the span

of each expansion is doubled in the subsequent step. This is becauselog n expansions will incur at

17

leastn/2× log n = O(n log n) communication latency, assuming the initial span is 1.

5.2 Optimal seed planting in 1-D arrays with holes

We propose a solution for the hole issue that is asymptotically optimal for several parameters, includ-

ing communication latency (O(n)), total moves (O(n)), and total moving distance (O(n2)), assuming

that each cluster knows only the state of its two neighbors through probing. It is also assumed that

the sensor network is sufficiently dense such that globalw ≥ 2 (i.e., on average, each cluster has 2

sensors). Later we will resort to a slightly stronger condition when the solution is extended from 1-D

arrays to 2-D meshes.

First, we give some notations used in the solution. Asegment, Si, is a maximum sequence of

non-empty clusters.Wi is the summation of load inSi andCi is the length ofSi. Now we introduce

two important concepts related toSi:

• Expansion level, Li, of Si: 2Li ≤ Ci < 2Li+1.

• Energy level, Ei, of Si: Ei = Wi − Ci.

Expansion levelLi determines spans of successive expansions2Li, 2Li+1, 2Li+2, ... , whereas

energy levelEi indicates the number of denotable sensors in the segment.Ei should be large enough

to cover holes in each expansion, i.e.,Ei ≥ 2Li+k for thekth expansion, which is called theexpansion

condition. Any cluster that has more than one sensor is in a denotable state for providing seeds, even

though the cluster may be in an underloaded state.

The solution is based on recursive doubling of the span for each successive expansion until there

is no sufficient energy for expansion, but the actual size of expansion is governed by the current

expansion level. For segmentSi with level Li, the sequence of span is2Li, 2Li+1, 2Li+2, For

example, suppose the lengthCi of Si is 13, the first span is23 = 8, making the new segment with

length 21; the next expansion with span24 = 16 will increase the length to29, and so on.

Two approaches, reactive or proactive, can be used here. In the reactive approach, each cluster

waits for an expansion signal from one of its predecessors or until a pre-defined time-out expires (the

time-out value is given in Theorem 5 below). This approach trades potential long delay for small total

moving distance and total moves. This approach operates in the synchronized environment, where the

18

synchronization point can be set during the initial deployment phase. In the proactive approach, each

segment acts independently for expansion. This approach has minimum communication latency but

with occasional extra sensor movements for the lack of synchronization. The solution can be described

by the following steps: (1) Following the positive direction, each segment performs expansion through

recursive doubling, when either it is informed from a predecessor segment or a predefined timeout

expires in the reactive approach, or without waiting for any signal or timeout for activation in the

proactive approach, until it either reaches the last cluster of the 1-D array or fails the expansion

condition. (2) Repeat step 1. for the negative direction except no timeout is needed at this step.

The efficiency of the method depends on the worst case timeout in the reactive approach and

excessive movement in parallel seed-planting in the proactive approach. The next theorem shows that

it is sufficient to set timeout to5(i− 1), wherei is the id of the first cluster in the segment. The total

moving distance in the proactive approach is still bounded withinO(n2).

Theorem 5: In each segmentS in a scan, the total moving distance in constructingS is bounded by

C2 and the communication latency is bounded by5C.

Proof: We prove by induction, whenSi expands to connectSj to form a newSk along the positive di-

rection, we assume thatC
′
i is the spanSi used to connectSj andC

′
j is the span of the non-overlapping

region inSj as in Figure 7. Note thatSi may merge with another segmentSj to form a new seg-

ment,Sk, as the result of the expansion ofSi (as shown in Figure 7).Sk will calculate itsWk andLk

accordingly. The special caseSj does not exist and has the length 0. The following proof still applies.

Based on the induction, the latency in the formation ofSi is bounded by5Ci. In the current

expansion,Ci is needed for the frontier node to inform all relevant clusters along the negative direction

in Si and it takesCi + C
′
i time to pass seeds to relevant positions. Finally, it takesC

′
j steps to reach

the frontier ofSk (i.e., the right most node inSj). Using the fact thatC
′
i ≤ Ci < 2C

′
i (expansion

conditions), we have5Ci + Ci + (Ci + C
′
i) + C

′
j < 5(Ci + C

′
i + C

′
j) = 5Ck.

Similarly, we show total moving distance by induction. Based on the induction, the formation ofSi

is bounded byC2
i . In the current expansion, the total moving distance is bounded by

∑C
′
i−1

l=0 (Ci + l) =

CiC
′
i + C

′
i(C

′
i − 1)/2. In the proactive approach, the formation ofSj needs to be included which is

bounded byC2
j < (C

′
i+C

′
j)

2. Using the fact thatC
′
i ≤ Ci < 2C

′
i , we haveC2

i +CiC
′
i+C

′
i(C

′
i − 1)/2+

(C
′
i + C

′
j)

2 < (Ci + C
′
i + C

′
j)

2 = C2
k 2

Since the method involves two sweeps, the overall moving distance is clearly bounded byO(n2)

19

expansion

Si(Ci) Sj(Cj)

Sk(Ck)

C
′

i C
′

j

Figure 7: The merging of two segments.

and the overall communication latency is bounded byO(n). Total moves are bounded byO(n) in the

reactive approach, and byO(n log n) in the proactive approach. In the latter case, clusters can plant

seeds in parallel, but recursive doubling limits parallel merging tolog n levels of the merging tree.

Therefore, the proposed method in the proactive mode is optimal for the three parameters.

The following theorem shows that no timeout is needed in the second scan and proves the correct-

ness of the 1-D scan approach. The postfix of the 1-D array is a subarray that contains the last cluster

in the array.

Theorem 6: Assume the average load is at least 2 for each cluster. After the first scan, at least one

postfix of the 1-D array is a segment. In the second scan, no timeout is needed. All holes will be filled.

Proof: It is assumed that average load for each cluster is at least 2. SupposeS1, S2, ..., Sk−1, Sk is

the sequence of segments after step 1 of pre-processing, where for eachSi (exceptSk), Ei < 2Li,

that is,Wi < 2Ci. If we let
∑k−1

i=1 Wi = WM and
∑k−1

i=1 Ci = CM , we haveWM < 2CM . Based on

the assumption of at least average load of 2 for each cluster, we haveWM + Wk ≥ 2CM + 2Ck >

WM +2Ck, therefore,Wk > 2Ck. Sk has sufficient energy for expansion. The only case for preventing

such an expansion is thatSk includes the last cluster in the 1-D array. Therefore,Sk is a postfix of the

1-D array.

During step 2 of pre-processing, sinceSk has sufficient energy, it will fill in the “gap” (a con-

secutive sequence of empty clusters) betweenSk andSk−1 by planting seeds in holes between them.

Following the same argument, the newly formed segment will have sufficient energy to fill the next

gap. In this way, all gaps will be filled after the second scan. 2

The result from Theorem 6 shows that the scan process can be combined with the pre-processing

(planting the seeds). That is, the scan process can start at step 2 of the pre-processing.

20

5.3 Extended SMART

Now let us extend the approach from 1-D to 2-D. The first issue is to ensure that each 1-D row

array in the 2-D mesh meetsw ≥ 2. Instead of enforcing it (which is impossible), we propose

a smoothing process on all columns before the pre-processing on rows. The smoothing process on

columns includes pre-processing (i.e., plant seeds in holes) and scan (i.e., load balance). This column-

wise smoothing process does not completely remove holes or balance load along columns unless

the number of sensors in each column is at least2n initially. However, when the sensor network is

sufficiently dense, each row will havew ≥ 2 after the column-wise smoothing process. The following

theorem shows the density requirement.

Theorem 7 Suppose the average number of sensors in a cluster is at least 4. After column-wise

smoothing, each row will have at least2n sensors.

Proof: We try to find the maximum number of sensors that can be deployed when at least one row still

has less than2n sensors after column-wise smoothing. If that number is less than4n2, the theorem is

proven.

Assume initiallyk columns have load of at least2n and the remainingn − k columns have load

under2n. The formerk columns will achieve load balancing after smoothing, while the lattern − k

columns will not. Without loss of generality, we assume row 1 (i.e., first nodes in all columns) has

less than2n sensors after smoothing. All the first nodes of thosen−k columns that have not achieved

the balanced state are holes. The maximum total load of nodes other than the first nodes in thesen−k

columns is bounded by(n − k)(2n − 1). The loads of first nodes of the otherk columns that have

achieved the balanced state along columns are assumed to bei1, i2, ..., ik, respectively. Based on

the balanced state definition, the maximum total load of nodes other than the first nodes in thesek

columns is bounded by(n−1)[(i1 +1)+(i2 +1)+ ...(ik +1)]. Therefore, the total number is bounded

by I + (n− 1)(I + k) + (n− k)(2n− 1) ≤ (2n− 1) + (n− 1)(2n + k− 1) + (n− k)(2n− 1) since

I = i1 + i2 + ... + ik ≤ 2n− 1. Clearly, the total number is bounded by4n2 − (2 + k)n < 4n2. This

number is maximized whenk = 1 and the corresponding distribution is shown in Figure 8. 2

With the above result, the extended SMART protocol can be resolved to the following steps:

• Step 1 (column-wise smoothing): Pre-processing on column (positive direction). If the last

cluster fails condition 1 (discussed below), step 1 terminates, otherwise, simultaneous pre-

21

2n−1

.

.
...

. . .

. . .

. . .

. . .

2n−1 2n−1 2n−1

0 0 0

2n

2n

2n

.

Figure 8: A worst case distribution.

processing and scan on column (negative direction). If the first cluster fails condition 2 (dis-

cussed below), step 1 terminates, otherwise, scan on column (positive direction).

• Step 2 (row-wise pre-processing and scan): Pre-processing on row (positive), followed by si-

multaneous pre-processing and scan on row (negative), finally scan on row (positive).

• Step 3 (column-wise scan): Scan on column (negative followed by positive).

Both conditions 1 and 2 are used for early termination when a particular column has less than2n

sensors. Condition 1 is defined as: the last cluster is included in a segmentS andW ≥ 2C. Condition

2 is defined as: the first cluster is included in a segmentS such thatC = n andW ≥ 2n. In step 1,

each column needs 1, 2 or 3 sweeps depending on whether that column has2n sensors or not. In step

2, 3 sweeps are needed and 2 sweeps are needed in step 3. In the worst case, 8 sweeps are needed.

The above approach has potential drawbacks in generating longer communication latency even in

the absence of holes. To resolve this issue, we introduce some simple bookkeeping. Once the first

sweep of step 1 is completed, each end node in the last row will set a flag to 1 whenever it registers at

least2n sensors in the corresponding segment. If all flags in the last row are set, step 3 can be skipped.

Checking whether all flags are set can be done in parallel with step 2, which needs2n steps with two

sweeps on the last row. The first sweep is a scan using boolean AND and the second is a broadcast of

the scan value of the first sweep which is a boolean value (1 for all flags set and 0 for otherwise).

With the above modification, the worst case number of sweeps is reduced to 5. One more sweep

can be eliminated by combining pre-processing and scan in step 1. Whenever the first cluster is

22

included in the current segment, the scan process also starts. At the end of the first sweep, if the

current segment includes both first and last clusters, the third sweep in step 1 can be eliminated since

its function can be done at the second sweep. The optimization for number of moves discussed in

Section III can still be used after the scan process starts. However, the number of moves during the

smoothing and pre-processing phases cannot be further reduced.

6 Simulation

6.1 Simulation environment

We use a custom simulator. The initial deployment it generates could be a uniform or normal random

distribution. We set up the simulation in a500 × 500 area, which is the target field. The tunable

parameters in our simulation are as follows. (1) Cluster numbersn×n. Largen can improve the speed

of deployment while smalln can achieve more balanced results. We use4 and10 asn’s values. (2)

Number of sensorsN . We have proved that at least4n2 sensors are needed to guarantee the validation

of SMART. Therefore, we varyN ’s value from 400 to 1000. We also include cases of under4n2

sensors to check the robustness of SMART. (3) Normal distribution parameterσ. σ is the standard

deviation of the normal distribution of the initial deployment, which can control the density degree of

the sensor clustering. We use 1 to 5 as its values. Whenσ is 1, around98% sensors are in10% region

of the area. Whenσ is 10, the distribution is very close to uniform random distribution. For each

tunable parameter, the simulation is repeated 1000 times. In addition to the proposed algorithms,

we also simulate the traditional load balancing algorithms diffusion (DIFF), dimension exchange

(EXCH), and the Voronoi-based localized sensor redistribution algorithm (VOR) for comparison.

The performance metrics are (a) deployment quality and (b) cost. Deployment quality is shown by

the balance degree measured by two simulation results. One is thestandard deviationof the number

of sensors in all the clusters. The other isgrads, which is the difference between the largest cluster

and the smallest one. Deployment cost is measured by the time of deployment, in terms of rounds,

and energy consumption, in terms of overall moving distance.

23

 5

 10

 15

 20

 25

 30

 35

 40

 400 500 600 700 800 900 1000

R
ou

nd
s

Number of nodes

DIFF
EXCH

SMART

(a) n = 4, σ = 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 400 500 600 700 800 900 1000

R
ou

nd
s

Number of nodes

DIFF
EXCH

SMART

(b) n = 4, σ = 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 400 500 600 700 800 900 1000

R
ou

nd
s

Number of nodes

DIFF
EXCH

SMART

(c) n = 10, σ = 1

 100000

 150000

 200000

 250000

 300000

 350000

 400 500 600 700 800 900 1000

M
ov

in
g

di
st

an
ce

Number of nodes

DIFF
EXCH

SMART

(d) n = 4, σ = 1

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 400 500 600 700 800 900 1000

M
ov

in
g

di
st

an
ce

Number of nodes

DIFF
EXCH

SMART

(e) n = 4, σ = 5

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 400 500 600 700 800 900 1000

M
ov

in
g

di
st

an
ce

Number of nodes

DIFF
EXCH

SMART

(f) n = 10, σ = 1

Figure 9: Comparison of DIFF, EXCH, and SMART in round number (a)-(c), and distance (d)-(f).

6.2 Simulation results

Figure 9 compares the number of rounds and moving distance of these three algorithms, DIFF, EXCH,

and SMART in uniform random distribution. From (a)-(c) we can see that the proposed SMART has

small and stable number of rounds. When the initial deployment is relatively balanced andn is small,

every row could have more than2n sensors, thus it has5 rounds; otherwise, it takes8 rounds (the

worst case). Diffusion and dimension exchange both have large numbers of rounds, which increase

with the growth of node number, especially whenn is large and the initial deployment is uneven. (d)-

(f) are the overall moving distance comparison. We can see that the overall sensor moving distance is

proportional to the number of sensors. Therefore, average moving distance of a sensor is insensitive

to node numbers in all these algorithms. Among the three, SMART has the largest moving distance.

This is because it achieves the most balanced final state, which leads to more sensor movements.

Figures 10 (a) and (b) show the balance degree of the results of these three algorithms by standard

deviation in uniform random distribution. SMART achieves a balanced final state, and its standard

24

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 500 600 700 800 900 1000

S
ta

nd
ar

d
de

vi
at

io
n

Number of nodes

DIFF
EXCH

SMART

(a) Standard deviation (n = 4)

 0

 2

 4

 6

 8

 10

 12

 14

 400 500 600 700 800 900 1000

S
ta

nd
ar

d
de

vi
at

io
n

Number of nodes

DIFF
EXCH

SMART

(b) Standard deviation, (n = 10)

 0

 1

 2

 3

 4

 5

 6

 7

 400 500 600 700 800 900 1000

G
ra

ds

Number of nodes

DIFF
EXCH

SMART

(c) Grads, (n = 4)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 400 500 600 700 800 900 1000

G
ra

ds

Number of nodes

DIFF
EXCH

SMART

(d) Grads, (n = 10)

Figure 10: Balance degree of DIFF, EXCH, and SMART (σ = 1).

deviation is no more than 2. (c) and (d) are in terms of grads. The grads of SMART is no more than

2, and the grads in a row or a column is no more than 1. In DIFF and EXCH, only relative balanced

state, the neighboring balance, is guaranteed. That is, the difference between adjacent clusters is no

more than 1. Therefore, the result could be a ladder-like distribution, which leads to very large grads

and standard deviation. Whenn is large, the grads of diffusion and dimension exchange are large, and

their balance degrees are low.

Figures 11 (a) (b) (d) and (e) compare the standard deviation and moving distance of algorithms

using different normal distribution parametersσ. The curve ‘Initial’ is the standard deviation of

the initial deployment. SMART can achieve a more balanced state than DIFF and EXCH. SMART

also outperforms them in number of moves. In SMART, sensors move at most twice, one move for

vertical direction and the other for horizontal; over75% sensors move only once. WhenN is 400,

andσ is 1, SMART has 444, diffusion has 1040, and dimension exchange has 1137. Since startup

usually consumes more power than moving with invariable speed, less movement is desired. (c) is the

standard deviation and (f) is moving distance comparison of VOR and SMART. We can see that VOR

25

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6

S
ta

nd
ar

d
de

vi
at

io
n

Normal distribution parameter

DIFF
EXCH

SMART
Initial

(a) Standard deviation,n = 4

 0

 10

 20

 30

 40

 50

 60

 1 1.5 2 2.5 3 3.5 4 4.5 5

S
ta

nd
ar

d
de

vi
at

io
n

Normal distribution parameter

DIFF
EXCH

SMART
Initial

(b) Standard deviation,n = 10

 0

 10

 20

 30

 40

 50

 60

 1 1.5 2 2.5 3 3.5 4 4.5 5

S
ta

nd
ar

d
de

vi
at

io
n

Normal distribution parameter

Initial
VOR

O-VOR
SMART

(c) Standard deviation,n = 10

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 2 3 4 5 6

M
ov

in
g

di
st

an
ce

Normal distribution parameter

DIFF
EXCH

SMART

(d) Moving distance,n = 4

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ov

in
g

di
st

an
ce

Normal distribution parameter

DIFF
EXCH

SMART

(e) Moving distance,n = 10

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ov

in
g

di
st

an
ce

Normal distribution parameter

VOR
O-VOR
SMART

(f) Moving distance,n = 10

Figure 11: SMART compares with DIFF, EXCH, and VOR using differentσ (N = 400).

can only slightly reduce the standard deviation of initial deployment. It has been mentioned in [5]

that the basic VOR algorithm has difficulties in dealing with high-degree clustering, where sensors

are centered around a few locations. Whenσ is 1, after applying VOR, the clustering area still has

high density, while the original blank area has low density. The optimized VOR (O-VOR) proposed

to deal with this problem is better than VOR, but SMART still outperforms O-VOR.

VOR is designed for a relatively sparse sensor network that has a uniform random initial deploy-

ment, whereas SMART is designed for a relatively dense network with high-degree clustering. For

fairness, we conduct the following simulation to compare the performance of SMART and VOR in a

relatively sparse network where the condition of Theorem 7 for SMART is not necessarily satisfied.

Figures 12 (a) and (b) show the comparisons of resultant balance degree (in terms of standard

deviation) and number of rounds of SMART, VOR, and O-VOR (σ = 3, n = 10). In (a), whenN

is larger than400, SMART guarantees the balanced final state, where the standard deviation of the

resultant deployment of SMART should be less than 2. This result is consistent with the analytical

26

results in the previous section, where if the average number of sensors in a cluster is less than 4, some

rows may have less than2n sensors after smoothing. When node number is smaller than400, the

standard deviation is larger than 2, and the balanced status is not achieved. However, the increase

of standard deviation is small and the balance degree of SMART can still beat that of VOR. For

VOR, when the node number is small, the resultant deployment is more balanced. With the growth

of the number of deployed nodes, the balance degree gets lower. This is because in the high-degree

clustering environment, when the coverage termination condition of VOR is met, most area can be

covered by at least one node, but VOR terminates before nodes in the clustering area scatter out. (b) is

the comparison of the number of rounds. At least400 deployed nodes are needed to achieve the best

performance, 5 rounds, for SMART. The worst is 8 rounds. For VOR, a smaller node number leads to

fewer rounds. But VOR has fewer rounds than SMART when the node number is smaller than 150.

O-VOR achieves more balanced degree with smaller round number than VOR.

Figures 12 (c) and (d) are the comparisons of the several variations of SMART, and also the

optimal Hungarian based method (OPT) in uniform and normal random distributions, respectively

(n = 10, N = 500). SMART(l), SMART(g), and SMART(m, 3) are simulated. To check the effect

of step (3) in threshold-based scan algorithm, we simulate SMART(g
′
), which is SMART(g) without

step (3). In (c), SMART(m) has the most moving distance, while SMART(g) has a smaller moving

distance than SMART(l). OPT has the smallest moving distance. (d) is results in normal random

distribution. With the growth ofσ, the moving distance decreases and the number of moves decreases

slightly. SMART(g) and SMART(m) have smaller moving distances than SMART(l). SMART(m)

has the smallest among the three. SMART(l) has close or even better performance than OPT because

it does not achieve a balanced result as OPT does.

Simulation results can be summarized as follows: (1) SMART achieves a more balanced state than

diffusion, dimension exchange, and Voronoi-based sensor deployment methods in unevenly deployed

sensor networks. (2) SMART needs few rounds, which are bounded by 8, for load balancing. (3) The

centralized optimal algorithm has the best performance; among all variations of SMART, SMART(g)

has the best overall performance. (4) SMART can be effective when used in relatively dense sensor

networks as a complement for the existing sensor deployment methods. (5) When number of deployed

nodes is less than4n2, the performance of SMART is reduced, since more rounds are needed and

balanced final state cannot be achieved. (6) In sparse network, SMART may need more rounds than

VOR to achieve a balanced degree, but it still beats VOR in terms of standard deviation.

27

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000

S
ta

nd
ar

d
de

vi
at

io
n

Number of nodes

VOR
O-VOR
SMART

(a) Standard deviation

 5

 6

 7

 8

 9

 10

 11

 12

 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 r

ou
nd

s

Number of nodes

VOR
O-VOR
SMART

(b) Round number

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 m

ov
in

g
di

st
an

ce

Number of nodes

OPT
SMART(l)

SMART(g’)
SMART(g)

SMART(m,3)

(c) Moving distance, uniform

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 m

ov
in

g
di

st
an

ce

Normal distribution parameter

OPT
SMART(l)

SMART(g)
SMART(m,3)

(d) Moving distance, normal

Figure 12: Property analysis of SMART and VOR; comparatione of variations of SMART.

7 Conclusion

In this paper, we have proposed a scan-based movement-assisted sensor deployment algorithm, which

is a hybrid approach of local and global methods. We have considered a unique issue called commu-

nication hole, where certain sensing areas have no deployed sensors. A method of seed-planting has

been proposed to move one senor to each uncovered area before the scanning process. We also develop

an optimal solution which is the Hungarian method based. Simulation results show that the proposed

method can achieve even deployment of sensors with modest costs. In the future, we will perform

in depth simulation on energy consumption of sensor deployment algorithms and design some intra-

cluster balancing algorithms to achieve high resolution load balancing. We also plan to consider the

case where only parts of the sensors are mobile. In this case, the ultimate goal is to maximize the

minimum load of these grids. This is a more general measurement for the balance degree of the final

distribution.

28

References

[1] I. F. Akyildiz, W. Su, Y. Sankrasubramaniam, and E. Cayirci, “A survey on sensor networks,”IEEE

Communication Magazine, pp. 102–114, August 2002.

[2] D. E. Culler and W. Hong, “Wireless sensor networks,”Communications of the ACM, vol. 47, no. 6, pp.

30–33, June 2004.

[3] G. T. Sibley, M. H. Rahimi, and G. S. Sukhatme, “Robomote: A tiny mobile robot platform for large-scale

sensor networks,” inProceedings of IEEE International Conference on Robotics and Automation (ICRA),

2002.

[4] O. Khatib, “Real time obstacle avoidance for manipulators and mobile robots,”International Journal of

Robotics Research, vol. 5, no. 1, pp. 90–98, August 1986.

[5] G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor deployment,” inProceedings of IEEE

INFOCOM, March 2004.

[6] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization based on virtual forces,” in

Proceedings of IEEE INFOCOM, March 2003.

[7] M. Locateli and U. Raber, “Packing equal circles in a square: a deterministic global optimization ap-

proach,”Discrete Applied Mathematics, vol. 122, pp. 139–166, Octobor 2002.

[8] A. Howard, M. J. Mataric, and G. S. Sukhatme, “An incremental self-deployment algorithm for mobile

sensor networks,”Autonomous Robots, Special Issue on Intelligent Embedded Systems, September 2002.

[9] G. E. Blelloch, “Scans as primitive parallel operations,”IEEE Transactions on Computers, vol. 38, no.

11, pp. 1526–1538, November 1989.

[10] J. Albowicz, A. Chen, and L. Zhang, “Recursive position estimation in sensor networks,” inProceedings

of IEEE ICNP, pp. 35–41.

[11] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor localization for very small devices,”

IEEE personal communications, Special Issue on Smart Spaces and Environment, vol. 7, no. 5, pp. 28–34,

Octobor 2000.

[12] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Relaxation on a mesh: a formation for generalized

localization.,” inProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2001.

[13] T. L. Casavant and J. G. Kuhl, “A communication finite automata approach to modeling distributed

computation and its application to distributed decision-making,”IEEE Transactions on Computers, vol.

39, no. 5, pp. 628–639, May 1990.

29

[14] G. Cybenko, “Load balancing for distributed memory multiprocessors,”Journal of Parallel and Dis-

tributed Computing, vol. 7, pp. 279–301, 1989.

[15] H. C. Lin and C. S. Raghavendra, “A dynamic load balancing policy with a central job dispatcher (lbc),”

IEEE Transactions on Software Engineering, vol. 18, no. 2, pp. 148–158, February 1992.

[16] L. M. Ni, C. W. Xu, and T. B. Gendreau, “A distributed drafting algorithm for load balancing,”IEEE

Transactions on Software Engineering, vol. 11, no. 10, pp. 1153–1161, Octobor 1985.

[17] C. Z. Xu and F. C. M. Lau,Load Balancing in Parallel Computers, Kluwer Academic Publishers, 1997.

[18] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja, “Sensor deployment strategy for

target detection,” inProceedings of WSNA, 2002.

[19] S. Dhillon, K. Chakrabarty, and S. Iyengar, “Sensor placement for grid coverage under imprecise detec-

tions,” in Proceedings of International Conference on Information Fusion, 2002.

[20] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure in wireless ad-hoc sensor net-

works,” in Proceedings of Mobicom, 2001.

[21] D. Du, F. Hwang, and S. Fortune, “Voronoi diagrams and delaunay triangulations,”Euclidean Geometry

and Computers, 1992.

[22] G. Wang, G. Cao, T. La Porta, and W. Zhang, “Sensor relocation in mobile sensor networks,” inProceed-

ings of IEEE INFOCOM, 2005.

[23] G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor deployment,”IEEE Transactions on

Mobile Computing, vol. 5, no. 6, pp. 640–652, 2006.

[24] “http://www.darpa.mil/ato/progarms/shm/index.html,” .

[25] S. Chellappan, X. Bai, B. Ma, and D. Xuan, “Mobility limited flip-based sensor networks deployment,”

in Proceedings of IEEE MASS, 2005.

[26] “Dictionary of algorithms and data structures,” 2005, http://www.nist.gov/dads/HTML/munkresAssignment

.html.

[27] C. H. Papadimitriou and K. Steiglitz,Combinatorial optimization, algorithms and complexity, Dover

publications,INC, 1998.

[28] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient

approach,” inProceedings of IEEE INFOCOM, March 2004.

30

