Scan-Based Movement-Assisted Sensor Deployment
Methods in Wireless Sensor Networks

Shuhui Yang, Minglu Lit, and Jie W
TDepartment of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
TDepartment of Computer Science and Engineering
Shanghai Jiao Tong University
Shanghai, P. R. China

Abstract

The efficiency of sensor networks depends on the coverage of the monitoring area. Although
in general a sufficient number of sensors are used to ensure a certain degree of redundancy in cov-
erage, a good sensor deployment is still necessary to balance the workload of sensors. In a sensor
network with locomotion facilities, sensors can move around to self-deploy. The movement-
assisted sensor deployment deals with moving sensors from an initial unbalanced state to a bal-
anced state. Therefore, various optimization problems can be defined to minimize different param-
eters, including total moving distance, total number of moves, communication/computation cost,
and convergence rate. In this paper, we first propose a Hungarian algorithm based optimal solu-
tion, which is centralized. Then a localized Scan-based Movement-Assisted sensoR deploymenT
method (SMART) and its several variations are proposed that use scan and dimension exchange
to achieve a balanced state. An extended SMART is developed to address a unique problem
calledcommunication holeim sensor networks. Extensive simulation has been done to verify the
effectiveness of the proposed scheme.

Keywords: Dimension exchange, Hungarian method, load balance, movement-assisted, scan,
sensor deployment, wireless sensor networks.

*This work was supported in part by NSF grants ANI 0073736, CCR 0329741, CNS 0422762, CNS 043533,
EIA 0130806, CNS 0531410, CNS 0626240, and national grand fundamental research 973 program of China, No
2006CB303000. Emails: syangl@fau.edu, li-ml@cs.sjtu.edu.cn, jie@cse.fau.edu.

1



1 Introduction

Wireless sensor networks (WSNSs) [1, 2] combine processing, sensing, and communications to forn
a distributed system capable of self-organizing, self-regulating, and self-repairing. The application of
WSNSs ranges from environmental monitoring, to surveillance, to coordinated target detection. The
efficiency of a sensor network depends on the coverage of the monitoring area. Although, in general
a sufficient number of sensors are used to ensure a certain degree of redundancy in coverage so tt
sensors can rotate between active and sleep modes, a good sensor deployment is still necessary
balance the workload of sensors. Mobile sensors [3] can be exploited to provide a re-distribution.

After an initial random deployment of sensors in the field, tih@vement-assisted sensor deploy-
ment[4] can be applied, which uses a potential-field-based approach to move existing sensors b
treating sensors as virtual particles, subject to virtual forces. Basically, the movement-assisted senst
deployment deals with moving sensors from an initial unbalanced state to a balanced state. There
fore, various optimization problems can be defined to minimize different parameters, including total
moving distance, total number of moves, communication/computation cost, and convergence rate.

More recently, some extended virtual force methods, such as in [5] and [6] which are based on
disk packing theory [7] and the virtual force field concept from robotics [8], are proposed. These
methods simulate the attractive and repulsive force between particles. Sensors in a relatively dens
region will explode slowly according to each other’s repulsive force and head toward a sparse region
In this way, the whole monitoring area can achieve an even distribution of sensors. However, these
methods may have a long deployment time since sensors move independently and they may even fe
if all the sensors can achieve force balance but not load balance.

We assume that sensors are deployed randomly into the square monitoring area without conside
ing of any physical obstacles. Then if we partition the monitoring area into many small regions, and
use the number of sensors in a region as its load, the sensor deployment problem can be viewed as
load balance problem in traditional parallel processing, where each region corresponds to a process
and the number of sensors in a region corresponds to the load. The sensor deployment resembles t
traditional load balance issue in parallel processing with several key differences:

¢ Different objectivesin traditional load balancing, total moving distance rather than the number
of moves is important, whereas in sensor networks, the number of moves is also important
because of relatively heavy energy consumption to start or stop a move.

2



¢ Different technical issue€One unique issue in sensor networks is the communication hole (or
simply hole) problem where some regions of the network have no deployed sensors. Since ther
is no centralized control, the network can be partitioned. Therefore, the network needs to be
connected first before load balancing.

In this paper, we first provide an optimal solution in 2-D meshes. This solution is based on the
classic Hungarian method, but requires global information without considering sensor network con-
nectivity. We then propose a method using a 2-dimensional (2-D) scan called Scan-based Movemen
Assisted sensoR deploymenT method (SMART). A typical scan operation [9] involves a binary opera-
tor & and an ordered séty, wy, ..., w,_1] where eachw; represents the number of sensors in a region,
and returns the ordered sety, (wy ® wy), ..., (wy & w1 @, ..., Bw,)]. In this paper, we consider only
integer addition and boolean AND operations for scan. Using integer addition, the scan operation will
return partial and total sum of the number of sensors. Since each region positianaa@dknown,
average load information can be easily calculated and distributed as can be the overload/underloz
situation of each ordered subset corresponding to a prefix of the ordered set.

In SMART, a given rectangular sensor field is first partitioned into a 2-D mesh through clustering.
Each cluster corresponds to a square region and has a clusterhead which is in charge of bookkeepil
and communication with adjacent clusterheads. A hybrid approach is used for load balancing, where
the 2-D mesh is partitioned into 1-D arrays by row and by column. Two scans are used in sequence
one for all rows, followed by the other for all columns. Within each row and column, the scan
operation is used to calculate the average load and then to determine the amount of overload ar
underload in clusters. Load is shifted from overloaded clusters to underloaded clusters in an optima
way to achieve a balanced state. By optimal, we mean the minimum number of moves and minimurnr
total moving distance. By a balanced state, we refer to a state with the maximum cluster size (the
number of sensors in a cluster) and the minimum cluster size being different by at most 1.

The communication holg@roblem in a 2-D mesh corresponds to a cluster with a cluster size of
zero. Clearly, the scan approach cannot be used in a row or column with holes, since clusterheac
separated by one or more holes cannot communicate with each other to perform a scan operation. |
the extreme case, the 2-D mesh may be disconnected as shown in Figure 1, where the number in ea
circle corresponds to the cluster size, and sensors in each cluster can communicate with sensors
adjacent clusters as well as sensors in the same cluster. In Figure 1, the network is partitioned into tw
components. Our solution to the hole issue is based on planting a “seed” from a non-empty cluste



Figure 1: A sample clustered sensor network that corresponds to a 2-D mesh.

to an adjacent empty cluster. Various solutions are proposed in such a way that this seed-plantin
process (also called pre-processing) can be easily integrated with the normal 2-D scan process |
achieve a good balance of various objectives. The network can use some newly developed locatio
services [10, 11] to estimate the locations of sensors; thus no GPS service is required at each sens
and the corresponding overhead is avoided. For example, locations of sensors can be determined |
using sensors themselves as landmarks [12].

The contributions of this paper are as follows: (1) We develop an optimal load balance solution
based on the classic Hungarian method that achieves minimum total moving distance, and use it as
baseline to check the performance of other approaches. (2) We systematically discuss the similarit
and difference between the traditional load balancing in parallel processing and movement-assiste
sensor deployment in sensor networks. (3) We propose a new hybrid approach called SMART, to-:
gether with several variations, that combines some desirable features of both local and global ap
proaches while overcoming their drawbacks. (4) We identify a unique technical problem called com-
munication hole and provide solutions to it. (5) We systematically study different trade-offs among
various contradictory goals. (6) We conduct extensive simulations and compare results with severa
existing local movement-assisted sensor deployment methods.

2 Preliminaries and Related Works

2.1 Load balance in multiprocessor systems

Extensive work has been done in the parallel processing community on load balancing. In general
load balance algorithms can be classified as local (such as iterative nearest neighbor exchanging [1

4



14]) and global (such as direct mapping [15, 16]). The global approach relies on global information
which is usually not scalable. Local algorithms can be either deterministic or stochastic. Diffusion and
dimension exchange are two widely used local deterministic methods. Both algorithms are iterative
and are based on nearest neighbor exchange. Once all nodes complete one iteration, it is called
sweep Although no information on load distribution is needed in local methods, iterative methods
incur a significant number of rounds (moves in sensor networks).

In the diffusion method, the balancing procedure is divided into a sequence of synchronous steps
At each step, each nodenteracts and exchanges load with all its neighberg(i). A diffusion
parameter decides the portion of the excess load to be diffused between aode=ach of its neigh-
bors. Xu and Lau [17] proved that the optimal uniform diffusion parameter that leads to the fastest
convergence for 2-D meshes is 1/4.

In the dimension exchange method, the edges of the graph are colored such that no two adjace!
edges have the same color. A “dimension” is then defined as a collection of edges with the same colo
In Figure 1, all edges are grouped into four dimensions. Edges with (&bkélong to dimension
1 (1 = 1,2,3,4). At each iteration, one particular color (dimension) is considered and every two
adjacent nodesand; connected by an edge with the selected color exchange their load according to
an exchange rate. Again, Xu and Lau [17] showed the optimal uniform exchange rate for2k,

2-D meshes (where both row and column numbers are even).

2.2 Movement-assisted sensor deployment

The sensor placement issue has been researched recently [18], [19], [20]. Random placement of se
sors may not satisfy the deployment requirement due to a hostile deployment environment. Therefore
the movement-assisted sensor deployment method is developed. Most existing movement-assistt
protocols rely on the notion of virtual force to move existing sensors from an initial unbalanced state
to a balanced state. These protocols are similar to nearest neighbor exchanging in load balancin
Sensors are involved in a sequence of computation (for a new position) and movement.

In [6], Zou and Chakrabarty proposed a centralized virtual force based mobile sensor deploymen
algorithm (VFA), which combines the idea of potential field and disk packing [7]. In VFA, there is
a powerful clusterhead, which will communicate with all the other sensors, collect sensor position
information, and calculate forces and desired position for each sensor. In VFA, the distance betweel



two adjacent nodes when all nodes are evenly distributed is defined as a threshold to distinguisl
attractive or repulsive force between two nodes. The force between two nodes is zero if their distanc
is equal to the threshold, attractive if less than and repulsive if greater than. The total force on a nod
is the sum of all the forces given by other sensors together with obstacles and preferential coverage i
the area. The clusterhead executes VFA and directs each sensor's movement. VFA has the drawbac
of centralized algorithms, single point failure, bottleneck of processing, and less scalability.

In [5], Wang, Cao, and La Porta developed a novel distributed self-deployment protocol for mobile
sensors. They used Voronoi diagrams [21] to find coverage holes in the sensor network, and propose
three algorithms, VEC (Vector-based), VOR (Moronoi-based), and Minimax, to guide sensor move-
ment toward the coverage hole. When applied to randomly deployed sensors, these algorithms ca
provide high coverage within a short time and limited moving distance. If the initial distribution of
the sensors is extremely uneven, disconnection may occur, thus, the Voronoi polygon constructed ma
not be accurate enough, which results in more moves and larger moving distance. They adopted tt
optimization of random scattering of some sensors to cover holes. The termination condition of their
algorithms is coverage instead of load balance. In [22], they further explored the motion capability of
sensors for relocation to deal with sensor failure or respond to new events. The algorithm contains twe
phases. The first one is redundant sensor location, and the second is redundant sensor relocation.
grid-quorum solution was proposed to quickly locate the closest redundant sensors to the target are
where a sensor failure occurs. In their recent work [23], they designed a virtual movement scheme fo
the deployment protocol to reduce the moving distance of sensors. To our best knowledge, our worl
is the first to exploit scan-based movement assisted solution for sensor redistribution.

Some recent work focuses on sensors with limited mobility, which is motivated by the DARPA
project called Intelligent Mobile Land Mine Units (IMLM) [24]. In IMLM, the mobility system is
based on a hopping mechanism. Chellapan, Bai, Ma, and Xuan [25] studied a special hopping mode
in which each sensor can flip (or flop) only once to a new location. In addition, the flip distance is
bounded. The deployment problem is then formulated as a minimum-cost maximum-flow problem.

3 An Optimal Solution

This section starts with an optimal solution for 2-D meshes based on the classic Hungarian method
Although due to its potential drawback of centralization, this optimal solution is not practical, espe-



cially when the WSNs are not connected, we can use it as a baseline to examine the performance ¢
other proposed methods.

3.1 Hungarian method

Let us consider thedge weighted matching problema complete bipartite graph,,, ,, (m nodes on

the left side andn on the right) with numbers associated with the edges called weights. The objective
is to find a perfect matching (of pairs), such that the sum of the weights of edges in the matching is
maximum (or minimum). A matching is to finek edges to connect nodes on the left side to those on
the right, and each node has only one edge.

A naive approach to solve the matching problem is to enumerate pdirfect matchings and find
an optimal one among them. A better solution called the Hungarian mleghasds. The following is
the algebraic formulation for the matching problem. Wexlgt(z, 7 = 1, ..., m), be a set of variables.
m is the number of nodes in the node sets of the complete bipartite graplV, U, E'), wherel/, U
are two node setd; is the edge setr;; = 1 means that the edde;, u;) is included in the matching,
whereasr;; = 0 means notc;; is the weight of edgév;, u;). An optimal solution is to:

Minimize X;;c;;xi;
subjectto > . z;;=1 i=1,....m
YoTii=1 j=1,....m

To use the Hungarian method to load balance in WSNs, we need to first convert the 2-D mesf
to a complete bipartite graph using the follow procedure: (1) Calculate the global avesge
determine “give”, “take”, and “neutral” state of each grid. (2) A node and edge weighted bipartite
graph is constructed, where “give” and “take” grids appear at the left and right hand sides of the graph
respectively. The node weight corresponds to amount of overload and underload, and the edge weig|
represents the distance between the “give” and “take” grids in a matching pair. (3) An edge weightec
perfect bipartite graph is derived by expanding each node with wgigght “clone” nodes. The edge
weight of clone nodes will inherit from the original nodes. It is obvious that the total sensor moving
distance is minimized. The total number of moves is also minimized since each sensor, if necessar

to move, only move once to its destination.

1In honor of the Hungarian mathematicians Oirig and E. Eger@ary who developed it.



@ (b) (©

Figure 2: (a) The node and edge weighted bipartite graph of Figure 3 with “give” grids at the left-hand
side and “take” grids at the right-hand side. (b) The edge weighted complete bipartite graph of (a)
and (c) the optimal solution.

3.2 Examples and analysis

In Figure 3, the global average in case is 5. There are three overloaded nodes and five underloade
nodes.M 3, 3] = 3 means overloaded by 3 units anfl1, 2] = 1 is underloaded by 1 unit. The edge
weight is the Manhattan distance between two end nddgs;j] andM[i', j']. Thatis,Az + Ay =

li —i'| 4+ |7 — j |>. For example, the edge connectihg3, 3] to M[1, 2] has a weight of 3. In Figure 2

(a), the node and edge weighted bipartite graph shows weights of all edges conié{irsj to
underloaded nodes. In Figure 2 (b), the edge weighted complete bipartite graph of (a) is shown, wher
each node (overloaded or underloaded) with welghask “clone” nodes. For examplé{ |3, 3] has

three clone nodes labeled from 1 to 3. The Hungarian method is then applied to (b) and the optima
result is shown in (c). The optimal result shows théat5, 5] (now with four clone nodes) needs to
move one sensor to each df[1, 2], M5, 2], M[2, 3], andM[4, 3].

There are several polynomial implementations for the Hungarian method. Our implementation
is based on Munkres’ method [26]. Another implementation [27] solves the problebrirt),
exploiting the solution to the maximum flow problem. The cost of implementing the Hungarian
method for load balance in WSNs@gm?), wherem is the amount of overloads (underloads) which

2The general distance between two points is defined As)* + (Ay)*)'/*. Whenk = 2, it is Euclidian distance,
and whenk = 1, it is Manhattan distance.



5/5|/5[6|5]9 6|/6|6|/6|6 5/5[/5[5|5
4/5|5/5|5|5 5/5[5[5]|5 5/5[5[5]|5
315|/4|8|3|5 5/5(5|5]|5 5/5|5|5]|5
214151254 414|14|14|4 5(5|5|5]|5
115/5(5|5]|5 5|/5(5|5|5 5|/5(5|5|5
i i1 2 3 4 s

@ (b) (©

Figure 3: An ideal case for SMART.

is bounded by the number of sensors. Usually, the number of sensors is one or two magnitude
higher than the number of grids), A BS (base station) is needed to connected to the WSN, serving
as the central controller for information collection and algorithm execution. Then BS informs all
clusterheads about the sensor movement via direct or multi-hop communication.

4 SMART

4.1 Basicideas

Unlike the optimal solution, SMART is a hybrid of the local and global approach. Its extension
(discussed in then next section) can be used in disconnected WSNs. The sensor network is partitione
into ann x n 2-D mesh of clusters (the method can be easily extended to the general 2-D

mesh). Each cluster covers a small square area, and is controlled by a clusterhead. The role of ea
clusterhead can be rotated within the cluster. Each clusterhead, in charge of communication witt
adjacent clusters, knows the following information: (1) its cluster’s positiom, the 2-D mesh (via
GPS) and (2) the number of sensars, in the cluster.

Two rounds of balancing are used with one for each dimension, first row, then column. As shown
in Figure 3, after the first round, all rows are balanced in (b); after the second round, all columns are
balanced, as is the whole area. Although balancing within a row or column can be done either locally
such as iterative nearest neighbor interaction or globally such as direct mapping, SMART relies on ar

extended scan method.



4.2 Clustering

Since each sensor node knows its clustet,idensors in the same cluster elect a unique clusterhead
based on a pre-defined priority. Assume each cluster covers-am square. To ensure the square

is covered whenever there is a sensor in the region, the sensingrrasieuld be set ta/2z (the
diagonal length of the square). To support transmission from non-clusterhead to clusterhead, the intre
cluster transmission range should be set to at l¢ast(also denoted as). To ensure the clusterhead

can communicate with clusterheads in four adjacent clusters, the inter-cluster transmission range
of each clusterhead should be at least the diagonal of the rectangle constructed from two adjacel
squares. That i3, = v/5z. If a sensor does not support two transmission rangesan be used for
intra-cluster communication.

Generally, the role of clusterhead should rotate among all the nodes in the cluster to achieve
balanced energy consumption and to prolong the life span of each individual node, such as in [28]
Non-clusterheads only need to report their own position and energy to clusterheads using transmissic
ranger, while clusterheads will communicate with neighboring clusters, take over the information
of sensors in its cluster, and direct the movement of sensors.

4.3 Scan

Consider the 1-D array of clusters where cluster id is labelled following the sequence in the linear
line. Again, denoteu; as the number of sensors in clusterLet v; be the prefix sum of the first
clusters, i.e.y; = Zj.zl w;. v, =y o, w; is the total sum. Clearlyp = v, /n is the average number

of sensors in a balanced state, and= iw is the prefix sum in the balanced state. Note thas a

real number which should be rounded to an intggef or [w]|. In a balanced statéy; — w;| < 1 for

any two clusters in the network.

The scan algorithm works from one end of the array to another (first scan) and then from the othet
end back to the initial end (second scan). The direction of the first sweep is pak#d/e (with
increasing order of cluster id) and that of the second swegptive(with decreasing order of cluster
id). The first sweep calculates the prefix sufjwhere each clusterheadetermines its prefix sum
by addingv;_; +w; and forwarding; to the next cluster. The clusterhead in the last cluster determines
v, andw = v, /n (load in a balanced state) and initiates the second scan by sending @utring
this scan, each clusterhead can determjne 1w (load of prefix sum in a balanced state) basedion

10



Table 1: The scan process on the third row of Figure 3.

i1 2]3]4]5
w; | 5] 4] 8| 3] 5
v; |51 9 17| 20|25
v; | 5]110] 15|20 25

that is passed around and its own cluster position

Knowing the load in the balanced state, each cluster can easily determine its “give/take” state.
Specifically, whenuv; — w = 0, clusteri is in the “neutral” state. Whemw; — w > 0, it is overloaded
and in the “give” state; and whan;, — w < 0, it is underloaded and in the “take” state. Each cluster
in the give state also needs to determine the number of sensors (load) to be sent to each directio
w;” for load in the positive direction (or simply give-right) andy; for load in the negative direction
(give-left). Based on the scan procedure, we have

w;” = min{w; — W, max{v; —7;,0}} (1)

w, = (w;, —wW)—w;” (2)

The 2-D scan process involves a row scan followed by a column scan as shown in Figures 3 (b’
and 3 (c), respectively. Table 1 shows details of the row scan on the third row wisetfee column
number. Only the cluster at columns 3 is in the “give” state, since its load is highetitkai. For
column 3,w3” = 2 (the load will be assigned to column 4, the actual schedule will be discussed later)
and w3 = 1 (it will be assigned to column 2). Similarly, a set of conditions can be given for the
“take” state:w;~ for take-right and™w; for take-left. It is clear that

w; = min{w — w;, max{v;_1 —v;_1,0}} (3)

—

w; = (W—w;) =" w; (4)

In the subsequent discussion, we uge; for both the number of take-left units and the take-left
state of clustet. The same convention is used for the other three notations. The distinguishing feature
of scan is its simplicity, where each clusterhead passes only one package in each sweep, prefix
sumuw; in one sweep followed by global averagean the second sweep.

11



4.4 Properties of Scan

An optimal load balance scheduling based on scan should satisfy the above four conditions relate
to give-right, give-left, take-right, and take-left for each cluster. By optimal, we mean the minimum
number of moves and minimum total moving distance. The following theorem shows that any vio-
lation of the conditions will result in the increase of overall moving distance and/or total number of
moves to reach a load balanced state.

Theorem 1. Any violation of the four conditions on give and take state of each cluster will result in
the increase of overall moving distance and/or total number of moves to reach a load balanced state

Proof: We consider four types of violation: take state changed to give state, give state changed tc
take state, take-right (take-left) changed to take-left (take-right), and give-right (give-left) changed to
give-left (give-right).

Suppose clusters state is changed from take to give and one unit is sent to clysfBy ensure
load balancing, that one unit at clustewill be compensated by another unit from clustefi.e., &
gives one unit back tg). A better scheme would begiving one unit directly tgj to save one move,
and shorten the distancejifandk are at the same side oin the 1-D array.

Suppose cluster's state is changed from give to take and one unit is given from clystdio
ensure load balancing, that one unit will be given away to clustét would be better forj to give
one unit directly tak to save one move, and shorten the distanéeaifid; are at the same side of

When clustel’s state mixes give-right with give-left, we assume that one unit is moved f#rpm
to ~w; (similarly for —w; to w;”). We show that this schedule will generate a longer moving distance.
Suppose this unit is moved froio i’ (1 < i’ < 7), based on the balanced state requirement, one unit
in a cluster; in region[1..i — 1] needs to be moved out to clustgmwith i < j° < n. We consider
swapping these two units atandj. To compare moving distance between these two cases (before
and after the swap), we consider two situations shown in Figure 4 as follows

1. Wheni' < j <i,wehavei —i |+ |j—j|>1j—i|+]i—j]
2. Whenl < j<i,wehavei —i|+|j—j|=i—i|+|j—i|+1i —3j>1j—i+]i—jl

In both cases, the moving distance before the s\api'| + |j — j'| is longer than that of after the
swap.

12



Figure 5: Two cases for mixing up take-right with take-left.

When clustei’s state mixes take-right with take-left, we again assume that one unit is moved from
~w; to w;~ (similarly for w;~ to ~w;). Suppose this unit is moved fromto i (i < i < n), based
on the balanced state requirement, one unit in a clysieregion|[1..: — 1] needs to be moved out
to cluster;” with n > j° > i. We consider swapping these two units and;j. To compare moving
distance between these two cases (before and after the swap), we consider two situations shown
Figure 5 forj’ < i’ and;j" > i'. Following the similar argument as in the above case, the moving
distance before the swap— i'| + [j — j'| is longer than that of after the swap. O

The following theorem shows that when four conditions are met, overall moving distance is inde-
pendent of the actual schedule.

Theorem 2 When take-right (take-left) states get load from give-left (give-right) states, the overall
moving distance is independent of the actual schedule.

Proof: Let’s consider schedules for all take-right states that get load from give-left states. The take-
left states getting load from give-right states case can be argued in a similar way. Starting from cluste
1 and checking towards cluster(i.e., along the positive direction), for each unit of underload in a
take-right state, assign one unit of load from the closest give-left statg.e., a cluster in a give-

left state with minimum id). Now we show that all other assignments can be converted to the above
schedule without changing the total moving distance. Suppose in the above state, the comé&s

from a non-closest give-left stage and the unit fromi’ is assigned to a take-right statevhere

i < j <1i.Byswapping with j', total moving distance remains the same, and the one uhitom

13



@ (b)

Figure 6: Swapping of and;’ without changing the total moving distance: (a) before the swap, and
(b) after the swap.

comes fromi’ (see Figure 6). This kind of swap can be done iteratively. O

4.5 An optimal scan in 1-D arrays and its extension in 2-D meshes

In this subsection, we propose a simple sender-initiated optimal load balance algorithm for 1-D arrays
The unique property is that the algorithm starts from each cluster in give state (give-left and give-right)
in parallel without the need to be concerned with the detail of take state of other clusters. Suppose
is in a take state where — w; > 0, then we do not distinguish take-right from take-left.

Sender-Initiated Optimal Load Balance in 1-D Arrays

1. For each cluster in give state, the clusterhead sends units to its right neighbor and sends
“w; units to its left neighbor.

2. For each cluster in take state, when the clusterhead senses several bypassing units, it inter-
sects as many units as possible to fill in its “holes”. Unintersected units move along the same
direction.

Theorem 3 The proposed greedy schedule ensures an optimal schedule in 1-D.arrays

Proof: It suffices to show the case in Figure 5 is avoided. That is, the two conditions related to take
state are satisfied. Based on the algorithm, when a unit is passdubto right to left as shown in
Figure 5, it implies that subarrdy...n] is in overloaded state; similarly, when a unit is passegl to
from left to right, the subarraji...;'] is in overloaded state. Sinée< j', the array{1...n] as a whole

is overloaded, which corresponds to a contradiction. a.

14



When the scan procedure is extended from 1-D arrays to 2-D meshes, the scan procedure is appli
twice: once on all rows, followed by once on all columns. This 2-D scan process represents the core
of SMART. However, this approach is no longer optimal in 2-D meshes. For example, consider a
2x2meshM|[1,1] =3, M[1,2] =1, M[2,1] = 3,andM[2, 2] = 5. A scan on rows will change load
distribution of the mesh td/[1, 1] = 2, M[1,2] = 2, M[2,1] = 4, andM[2,2] = 4, and a scan on
columns will balance the mesh fd |1, 1] = 3, M[1,2] = 3, M[2,1] = 3, andM[2, 2] = 3. A total of
4 moves occur, however, the optimal solution requires only 2 moves #fd22| to M/ [1, 2] directly.

Theorem 4 The ratio between the 2-D scan and the optimal solution in terms of the number of moves
is bounded by 2

Proof: During the 2-D scan, wasted moves occur during the first scan when a (globally) underloaded
clusteri moves the load to another (globally) underloaded clugteSupposel units of load are
moved from; andj. L units of load for;j are necessary, while units for: are wasted units. A similar
situation occurs when a (globally) overloaded clustaroves load to another (globally) overloaded
clusterj. In this case/ units forj are wasted, whild. units fori are necessary. It is easy to follow

that for each wasted move there is a matching necessary move, therefore, the ratio is bonded by

4.6 Several variations of SMART

In SMART, an “aggressive” approach is used where a local “give” state in a row or column can be
a global “take” state. To avoid this situation, a “conservative” approach can be used to decide local
“give” and “take” state based on global average information.

Besides the prefix sum of the firsgrids in a row (or column) in the positive direction, i.e;,=
22-:1 w;, another negative direction prefix sum is exploited, where 37 w;, andv; = > 7| w;
is the total sum in the row (or column). The negative prefix sum is achieved in the negative sweep
where the average is sending out. Naw, = v, /n is the average number of sensors in a local
balanced state with respect to the current row (or column) > | Z;;l w;; is the global total
sum. Thenw, = v/n?* is the average number of sensors in a global balanced state. We define a third
kind of average a®,,, = |w, — w;|/2, the mean of global and local balanced state. This average is to

achieve a compromise between conservative and aggressive approaches.

The variation differs from the original SMART in its definition of threshaidused to determine

15



the “give/take” state. Still, whew; — w = 0, grid i is in the “neutral” state. Whew, — w > 0, it

is overloaded and in the “give” state; and when— w < 0, it is underloaded and in the “take” state.
w can be one of three possible choices; w,, andw,,. Again,v; = 1w is the the prefix sum in the
balanced state under the given thresholdndv;’ = (n — i + 1)w is that of the negative directiom:
should be rounded to an integer.

In the original SMART, the threshold is based on the local averageyhen “give” and “take”
states are balanced in a row (or column). With a changing threshold, such a balance is no longe
held. That is, there could be more “give” than “take” grids and vice versa. Therefpréor load in
the positive direction (or simply give-right) ardw; for load in the negative direction (give-left) are
changed as follows: a grid is in “give” state if its value is over the given thresiholthe amount of
excessive load to be transferred to its right (or left) depends on the amount of underload to its right (or
left) provided that amount does not cause the underload of the current node. More formally, we have

w; = min{w; —w, maX{UZ/'H - U§+1a 0}} (5)

“w; = min{(w; — W) — w; , max{(vi_1 — v;—1),0}} (6)

The threshold-based scan approach

1. If w # w;, determine global balanced valug.
2. Perform a row scan followed by a column scan using the selected

3. If w # wy, repeat step (2) using = w;.

w, in step (1) can be calculated during step (2). Basicailyjs determined after row and then
column scans. However, in these scans there are no actual sensor movements. Movements occ
oncew is derived fromw,. Step (3) is needed since the result of step (2) cannot guarantee a globally
balanced state. Whem = w,,, one variation of the algorithm is to repeat step (2) a constgnt (
number of times before applying step (3). We use SMARTEMART(), and SMART(n, ¢) to
represent the threshold-based scan that uses global average, local average (the original SMART), al
mean of global and local average, respectivelyin SMART(m, ¢) corresponds to the number of
iterations of step (2).

If the total number of sensors is unknown, more information propagation is necessary. After the
last cluster of each row gets the total number in its row, one more scan is generated in the last colum

16



to achieve the global average. Then a scan in the negative direction in the column is conducted t
distribute the average to each row.

5 Extended SMART

5.1 Simple solutions

The 2-D scan discussed previously works only when there is no hole, otherwise, certain rows anc
columns may not be connected. In the worst case, the 2-D mesh may be disconnected. A pre
processing is needed to plant “seeds” to holes at each 1-D scan and these seeds will serve as clust
heads in these holes.

Planting seeds in holes in an asymptotically optimal way is a non-trivial task. Suppose we want
to optimize total moving distance, the number of moves, and communication latency (where each se
quential neighbor communication is considered one step). The total moving distance shogid be
(as in the case of the first row of Figure 1), the number of moves should/bg and communication
latency should bé&(n).

A conservative approach could be sending out one seed at a time to an adjacent empty cluste
This will work for the case of the third row of Figure 1 whetas a number larger than 5 and the
direction is from left to right. However, this approach does not work well for the case of the first
row, since the frontier node, the clusterhead of the first nonempty cluster in the expansion direction
needs to communicate with the left most node after each probing and expansion. The correspondin
communication latency i%Z?:’lli = O(n?). Note that if the moving distance is a dominating factor,
rather than the communication latency, this is still an acceptable solution.

In an aggressive approach, each cluster that has a sufficient number of sensors (seeds) can se
out multiple seeds to cover the rest. This approach certainly works for the case of the first row, but
fails for the case of the third row. In this case, the total moving distance would bel)? + (n —

3)2 + ... + 32+ 12 = O(n?) since clusters in give state can initiate the process simultaneously. Also
the number of movesig: — 1) + (n — 3) + ... + 3+ 1 = O(n?).

The simple recursive doubling does not work either for the case of the second row, where the spal
of each expansion is doubled in the subsequent step. This is bdogusexpansions will incur at

17



leastn/2 x logn = O(nlogn) communication latency, assuming the initial span is 1.

5.2 Optimal seed planting in 1-D arrays with holes

We propose a solution for the hole issue that is asymptotically optimal for several parameters, includ-
ing communication latency{(n)), total movesQ(n)), and total moving distanc&Xn?)), assuming

that each cluster knows only the state of its two neighbors through probing. It is also assumed tha
the sensor network is sufficiently dense such that glabat 2 (i.e., on average, each cluster has 2
sensors). Later we will resort to a slightly stronger condition when the solution is extended from 1-D
arrays to 2-D meshes.

First, we give some notations used in the solutionseyment.s;, is a maximum sequence of
non-empty clustersi¥; is the summation of load i§; andC; is the length ofS;. Now we introduce
two important concepts related :

e Expansion levelL;, of S;: 2 < C; < 25i+1,

e EnergylevelE;, of S;: E; =W, — C;.

Expansion levell; determines spans of successive expansidns2:*!, 2Li+2  whereas
energy levelF; indicates the number of denotable sensors in the segmgshould be large enough
to cover holes in each expansion, i8g;,> 2%i** for the kth expansion, which is called tlexpansion
condition Any cluster that has more than one sensor is in a denotable state for providing seeds, eve
though the cluster may be in an underloaded state.

The solution is based on recursive doubling of the span for each successive expansion until ther
is no sufficient energy for expansion, but the actual size of expansion is governed by the current
expansion level. For segmefit with level L;, the sequence of span2$:, 2%+t 2Li+2 = For
example, suppose the length of S; is 13, the first span i8® = 8, making the new segment with
length 21; the next expansion with spzin= 16 will increase the length t@9, and so on.

Two approaches, reactive or proactive, can be used here. In the reactive approach, each clust
waits for an expansion signal from one of its predecessors or until a pre-defined time-out expires (the
time-out value is given in Theorem 5 below). This approach trades potential long delay for small total
moving distance and total moves. This approach operates in the synchronized environment, where tf

18



synchronization point can be set during the initial deployment phase. In the proactive approach, eac
segment acts independently for expansion. This approach has minimum communication latency bt
with occasional extra sensor movements for the lack of synchronization. The solution can be describe
by the following steps: (1) Following the positive direction, each segment performs expansion through
recursive doubling, when either it is informed from a predecessor segment or a predefined timeou
expires in the reactive approach, or without waiting for any signal or timeout for activation in the
proactive approach, until it either reaches the last cluster of the 1-D array or fails the expansion
condition. (2) Repeat step 1. for the negative direction except no timeout is needed at this step.

The efficiency of the method depends on the worst case timeout in the reactive approach ant
excessive movement in parallel seed-planting in the proactive approach. The next theorem shows th
it is sufficient to set timeout t6(i — 1), where: is the id of the first cluster in the segment. The total
moving distance in the proactive approach is still bounded within?).

Theorem 5 In each segmerfi in a scan, the total moving distance in constructfgs bounded by
C? and the communication latency is boundedby

Proof: We prove by induction, whefi; expands to conned; to form a news;, along the positive di-
rection, we assume thét is the spars; used to connect; andCJ'. Is the span of the non-overlapping
region inS; as in Figure 7. Note tha$; may merge with another segmes$it to form a new seg-
ment, Sy, as the result of the expansion 8f(as shown in Figure 7)S,. will calculate its\V,, and L,
accordingly. The special case does not exist and has the length 0. The following proof still applies.

Based on the induction, the latency in the formationSpfis bounded bysC;. In the current
expansion(; is needed for the frontier node to inform all relevant clusters along the negative direction
in S; and it takes”; 4 C; time to pass seeds to relevant positions. Finally, it ta[%'esteps to reach
the frontier ofS;, (i.e., the right most node i;). Using the fact that; < C; < 2C; (expansion
conditions), we haveC; + C; + (C; + C;) + C; < 5(C; + C; + C}) = 5Cy.

Similarly, we show total moving distance by induction. Based on the induction,/the formatihn of
is bounded by’?. In the current expansion, the total moving distance is bound@lﬁgl((}i +1) =
C;C; + C;(C; — 1)/2. In the proactive approach, the formation®fneeds to be included which is
bounded by? < (C;+C})2. Using the factthat’; < C; < 2C;, we haveC?+C;C;+C; (C; — 1)/2+
(Ci+ C)? < (Ci+ C; + C))? = CF O

Since the method involves two sweeps, the overall moving distance is clearly boundddy

19



expansion

Figure 7. The merging of two segments.

and the overall communication latency is boundedigy ). Total moves are bounded I6}(n) in the
reactive approach, and l6y(n logn) in the proactive approach. In the latter case, clusters can plant
seeds in parallel, but recursive doubling limits parallel merginipgo: levels of the merging tree.
Therefore, the proposed method in the proactive mode is optimal for the three parameters.

The following theorem shows that no timeout is needed in the second scan and proves the correc
ness of the 1-D scan approach. The postfix of the 1-D array is a subarray that contains the last cluste
in the array.

Theorem 6. Assume the average load is at least 2 for each cluster. After the first scan, at least one
postfix of the 1-D array is a segment. In the second scan, no timeout is needed. All holes will be filled

Proof: It is assumed that average load for each cluster is at least 2. Sufpdse..., Sy_1, Sy IS

the sequence of segments after step 1 of pre-processing, where fos;e@feepts,), F; < 2,
thatis,IW; < 2C;. If we let Y5~ W, = W)y, and>F ! C; = Cy, we havelV,, < 2C),. Based on

the assumption of at least average load of 2 for each cluster, welligve W, > 2C,, + 2C}, >

Wi +2Cy, therefore)V,, > 2C,. S, has sufficient energy for expansion. The only case for preventing
such an expansion is th&f includes the last cluster in the 1-D array. Therefdigis a postfix of the
1-D array.

During step 2 of pre-processing, sinSg has sufficient energy, it will fill in the “gap” (a con-
secutive sequence of empty clusters) betwgeand S, _; by planting seeds in holes between them.
Following the same argument, the newly formed segment will have sufficient energy to fill the next
gap. In this way, all gaps will be filled after the second scan. O

The result from Theorem 6 shows that the scan process can be combined with the pre-processir
(planting the seeds). That is, the scan process can start at step 2 of the pre-processing.

20



5.3 Extended SMART

Now let us extend the approach from 1-D to 2-D. The first issue is to ensure that each 1-D row
array in the 2-D mesh meets > 2. Instead of enforcing it (which is impossible), we propose

a smoothing process on all columns before the pre-processing on rows. The smoothing process c
columns includes pre-processing (i.e., plant seeds in holes) and scan (i.e., load balance). This columi
wise smoothing process does not completely remove holes or balance load along columns unles
the number of sensors in each column is at lI@asinitially. However, when the sensor network is
sufficiently dense, each row will have > 2 after the column-wise smoothing process. The following
theorem shows the density requirement.

Theorem 7 Suppose the average number of sensors in a cluster is at least 4. After column-wise
smoothing, each row will have at leakt sensors.

Proof: We try to find the maximum number of sensors that can be deployed when at least one row still
has less thadn sensors after column-wise smoothing. If that number is less4h3rthe theorem is
proven.

Assume initiallyk columns have load of at lea%t and the remaining — k£ columns have load
under2n. The formerk columns will achieve load balancing after smoothing, while the latterk
columns will not. Without loss of generality, we assume row 1 (i.e., first nodes in all columns) has
less thar2n sensors after smoothing. All the first nodes of thesek columns that have not achieved
the balanced state are holes. The maximum total load of nodes other than the first nodesin-these
columns is bounded byn — k)(2n — 1). The loads of first nodes of the othercolumns that have
achieved the balanced state along columns are assumedifpibe..., i, respectively. Based on
the balanced state definition, the maximum total load of nodes other than the first nodes ih these
columns is bounded by — 1)[(i1 + 1) + (i2+ 1) +...(ix + 1)]. Therefore, the total number is bounded
byl+(n—1){I+k)+(n—k)(2n—1)<(2n—1)4+(n—1)2n+k—1)+ (n—k)(2n — 1) since
I =iy +1is+ ... + 1, < 2n — 1. Clearly, the total number is bounded by* — (2 + k)n < 4n?. This
number is maximized wheh = 1 and the corresponding distribution is shown in Figure 8. O

With the above result, the extended SMART protocol can be resolved to the following steps:

e Step 1 (column-wise smoothing): Pre-processing on column (positive direction). If the last
cluster fails condition 1 (discussed below), step 1 terminates, otherwise, simultaneous pre-

21



n-1] 0 ce 0 0

2n

2n-1 ; 2n-1{|2n-1

2n

2n

Figure 8: A worst case distribution.

processing and scan on column (negative direction). If the first cluster fails condition 2 (dis-
cussed below), step 1 terminates, otherwise, scan on column (positive direction).

e Step 2 (row-wise pre-processing and scan): Pre-processing on row (positive), followed by si-
multaneous pre-processing and scan on row (negative), finally scan on row (positive).

e Step 3 (column-wise scan): Scan on column (negative followed by positive).

Both conditions 1 and 2 are used for early termination when a particular column has le8s than
sensors. Condition 1 is defined as: the last cluster is included in a se§raadi’” > 2C'. Condition
2 is defined as: the first cluster is included in a segnsesitich that”' = n andW > 2n. In step 1,
each column needs 1, 2 or 3 sweeps depending on whether that colummsessors or not. In step
2, 3 sweeps are needed and 2 sweeps are needed in step 3. In the worst case, 8 sweeps are neede

The above approach has potential drawbacks in generating longer communication latency even i
the absence of holes. To resolve this issue, we introduce some simple bookkeeping. Once the fir:
sweep of step 1 is completed, each end node in the last row will set a flag to 1 whenever it registers &
least2n sensors in the corresponding segment. If all flags in the last row are set, step 3 can be skippec
Checking whether all flags are set can be done in parallel with step 2, which restégps with two
sweeps on the last row. The first sweep is a scan using boolean AND and the second is a broadcast
the scan value of the first sweep which is a boolean value (1 for all flags set and O for otherwise).

With the above modification, the worst case number of sweeps is reduced to 5. One more swee
can be eliminated by combining pre-processing and scan in step 1. Whenever the first cluster i

22



included in the current segment, the scan process also starts. At the end of the first sweep, if th
current segment includes both first and last clusters, the third sweep in step 1 can be eliminated sinc
its function can be done at the second sweep. The optimization for number of moves discussed il
Section Ill can still be used after the scan process starts. However, the number of moves during th
smoothing and pre-processing phases cannot be further reduced.

6 Simulation

6.1 Simulation environment

We use a custom simulator. The initial deployment it generates could be a uniform or normal random
distribution. We set up the simulation in580 x 500 area, which is the target field. The tunable
parameters in our simulation are as follows. (1) Cluster numbgrs. Largen can improve the speed

of deployment while smath can achieve more balanced results. We4aed10 asn’s values. (2)
Number of sensord’. We have proved that at least? sensors are needed to guarantee the validation
of SMART. Therefore, we varyV’s value from 400 to 1000. We also include cases of undér
sensors to check the robustness of SMART. (3) Normal distribution parameteis the standard
deviation of the normal distribution of the initial deployment, which can control the density degree of
the sensor clustering. We use 1 to 5 as its values. Wherl, aroun®8% sensors are in0% region

of the area. Whem is 10, the distribution is very close to uniform random distribution. For each
tunable parameter, the simulation is repeated 1000 times. In addition to the proposed algorithms
we also simulate the traditional load balancing algorithms diffusion (DIFF), dimension exchange
(EXCH), and the Voronoi-based localized sensor redistribution algorithm (VOR) for comparison.

The performance metrics are (a) deployment quality and (b) cost. Deployment quality is shown by
the balance degree measured by two simulation results. Onessatindard deviatiorof the number
of sensors in all the clusters. The othegrads which is the difference between the largest cluster
and the smallest one. Deployment cost is measured by the time of deployment, in terms of rounds
and energy consumption, in terms of overall moving distance.

23



40 T T T T T 40

DIFF —— DIFF —— e
EXCH - e 35 | EXCH ——
35 [SMART ~oxs oot SMART otz
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
20| | 30 - 9
25 - =
g 25¢ TE ] 3
5 5 20¢ 1 5
g 20 1 & 2
15 ] 40 -
L 4 30
15 10h |
) 20 t
10 ] 51 * - o - 10 |
5 . . . . . 0 . . . . . 0 . . . . .
400 500 600 700 800 900 1000 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
Number of nodes Number of nodes Number of nodes
@n=40=1 b)yn=4,0=5 () n=10,0=1

350000

220000 T T T T T 400000

E
200000 [SMART --x e a 350000
300000 | #

180000 300000 -

250000

160000 250000

140000 - 200000

Moving distance
Moving distance
Moving distance

200000

120000 150000 -

150000 |-

100000 | 100000 £

100000 80000 ©
400 4

500 600 700 800 900 1000 00 500 600 700 800 900 1000 00 500 600 700 800 900 1000
Number of nodes Number of nodes Number of nodes

50000
A

(dn=4,0=1 (e)n=4,0=5 fHn=10,0=1

Figure 9: Comparison of DIFF, EXCH, and SMART in round number (a)-(c), and distance (d)-(f).
6.2 Simulation results

Figure 9 compares the number of rounds and moving distance of these three algorithms, DIFF, EXCH
and SMART in uniform random distribution. From (a)-(c) we can see that the proposed SMART has
small and stable number of rounds. When the initial deployment is relatively balancedssohall,

every row could have more tham sensors, thus it hasrounds; otherwise, it takesrounds (the

worst case). Diffusion and dimension exchange both have large numbers of rounds, which increas
with the growth of node number, especially whers large and the initial deployment is uneven. (d)-

(f) are the overall moving distance comparison. We can see that the overall sensor moving distance |
proportional to the number of sensors. Therefore, average moving distance of a sensor is insensitiv
to node numbers in all these algorithms. Among the three, SMART has the largest moving distance
This is because it achieves the most balanced final state, which leads to more sensor movements.

Figures 10 (a) and (b) show the balance degree of the results of these three algorithms by standa
deviation in uniform random distribution. SMART achieves a balanced final state, and its standard

24



4.5 T T T T T 14

DIFF —— DIFF ——
EXCH - EXCH -~
4 ISMART e 1 12 |SMART - B — &
c 351 1 - 10 {* 1
S S
k<] 3t k=] /*/*/4—»7/*/’
N S g st f
3 25T - =
g g of
7} sl h o4l
1t 2r
05 . . . . . 0 . . . . .
400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
Number of nodes Number of nodes
(a) Standard deviatiom(= 4) (b) Standard deviationp(= 10)
7 T T T T T 16 T T T T T
DIFF —— DIFF ——
EXCH EXCH % B ——
6 M 14 [gamat §
sl | L xx 1
w 4r [ 0
B T e e ® sl
& 4l &
6|
2 r al
1% 2
0 . . . . . 0 . . . . .
400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
Number of nodes Number of nodes
(c) Grads, ¢ = 4) (d) Grads, & = 10)

Figure 10: Balance degree of DIFF, EXCH, and SMART= 1).

deviation is no more than 2. (c) and (d) are in terms of grads. The grads of SMART is no more than
2, and the grads in a row or a column is no more than 1. In DIFF and EXCH, only relative balanced
state, the neighboring balance, is guaranteed. That is, the difference between adjacent clusters is |
more than 1. Therefore, the result could be a ladder-like distribution, which leads to very large grads
and standard deviation. Wheris large, the grads of diffusion and dimension exchange are large, and
their balance degrees are low.

Figures 11 (a) (b) (d) and (e) compare the standard deviation and moving distance of algorithms
using different normal distribution parameters The curve ‘Initial’ is the standard deviation of
the initial deployment. SMART can achieve a more balanced state than DIFF and EXCH. SMART
also outperforms them in number of moves. In SMART, sensors move at most twice, one move for
vertical direction and the other for horizontal; ovér’% sensors move only once. Whénis 400,
ando is 1, SMART has 444, diffusion has 1040, and dimension exchange has 1137. Since startuy
usually consumes more power than moving with invariable speed, less movement is desired. (c) is th
standard deviation and (f) is moving distance comparison of VOR and SMART. We can see that VOR

25



200 T T T T 60 T T T T T T T 60
DIFF —— DIFF ——
180 | EXCH —-x-— 1 EXCH -
SMART --= 50 |~ SMART --= i 50 D
160 Initial e 1 Initial =
§ oy § wf S af
5]
£ 120 g g
3 3 g T
S 100 ¢ S 80 3 80
a a 5]
g 807 . 5 2
» 60 @ 2 -
40 ¢ L — 1 10
20 t ——
0 0 : * — . 0 ; ;i ; i ; ;i ;
1 2 3 4 5 6 1 15 2 25 3 35 4 4.5 5 1 15 2 25 3 35 4 4.5 5
Normal distribution parameter Normal distribution parameter Normal distribution parameter
(a) Standard deviatiom, = 4 (b) Standard deviatiom, = 10 (c) Standard deviatiom, = 10

140000 1 - . . . 160000 . - . . . . . 350000
120000 140000 [SMART —-x 1 300000 [T

120000 250000 -

100000 -

100000 [
200000 -
80000 80000 [ .

150000 ...

Moving distance
Moving distance
Moving distance

60000
60000
40000 - 100000
40000

20000 | 50000 -

20000 . . . . 0 . . . . . . ; 0 . . . . . . .
1 2 3 4 5 6 1 15 2 25 3 35 4 4.5 5 1 15 2 25 3 35 4 4.5 5
Normal distribution parameter Normal distribution parameter Normal distribution parameter

(d) Moving distancep = 4 (e) Moving distancep = 10 (f) Moving distancen = 10

Figure 11: SMART compares with DIFF, EXCH, and VOR using differeiitv = 400).

can only slightly reduce the standard deviation of initial deployment. It has been mentioned in [5]
that the basic VOR algorithm has difficulties in dealing with high-degree clustering, where sensors
are centered around a few locations. Wheis 1, after applying VOR, the clustering area still has
high density, while the original blank area has low density. The optimized VOR (O-VOR) proposed
to deal with this problem is better than VOR, but SMART still outperforms O-VOR.

VOR is designed for a relatively sparse sensor network that has a uniform random initial deploy-
ment, whereas SMART is designed for a relatively dense network with high-degree clustering. For
fairness, we conduct the following simulation to compare the performance of SMART and VOR in a
relatively sparse network where the condition of Theorem 7 for SMART is not necessarily satisfied.

Figures 12 (a) and (b) show the comparisons of resultant balance degree (in terms of standar
deviation) and number of rounds of SMART, VOR, and O-VOR= 3, n = 10). In (a), whenN
is larger tham00, SMART guarantees the balanced final state, where the standard deviation of the
resultant deployment of SMART should be less than 2. This result is consistent with the analytical

26



results in the previous section, where if the average number of sensors in a cluster is less than 4, son
rows may have less thdn sensors after smoothing. When node number is smaller4b@nthe
standard deviation is larger than 2, and the balanced status is not achieved. However, the increa:
of standard deviation is small and the balance degree of SMART can still beat that of VOR. For
VOR, when the node number is small, the resultant deployment is more balanced. With the growth
of the number of deployed nodes, the balance degree gets lower. This is because in the high-degr:
clustering environment, when the coverage termination condition of VOR is met, most area can be
covered by at least one node, but VOR terminates before nodes in the clustering area scatter out. (b)
the comparison of the number of rounds. At lef¥i deployed nodes are needed to achieve the best
performance, 5 rounds, for SMART. The worst is 8 rounds. For VOR, a smaller node number leads tc
fewer rounds. But VOR has fewer rounds than SMART when the node number is smaller than 150.
O-VOR achieves more balanced degree with smaller round number than VOR.

Figures 12 (c) and (d) are the comparisons of the several variations of SMART, and also the
optimal Hungarian based method (OPT) in uniform and normal random distributions, respectively
(n = 10, N = 500). SMART(/), SMART(g), and SMART(, 3) are simulated. To check the effect
of step (3) in threshold-based scan algorithm, we simulate SMARWhich is SMART() without
step (3). In (c), SMART{:) has the most moving distance, while SMART fas a smaller moving
distance than SMART). OPT has the smallest moving distance. (d) is results in normal random
distribution. With the growth of, the moving distance decreases and the number of moves decreases
slightly. SMART(g) and SMART () have smaller moving distances than SMARTSMART (m)
has the smallest among the three. SMART@s close or even better performance than OPT because
it does not achieve a balanced result as OPT does.

Simulation results can be summarized as follows: (1) SMART achieves a more balanced state tha
diffusion, dimension exchange, and Voronoi-based sensor deployment methods in unevenly deploye
sensor networks. (2) SMART needs few rounds, which are bounded by 8, for load balancing. (3) The
centralized optimal algorithm has the best performance; among all variations of SMART, SMART (
has the best overall performance. (4) SMART can be effective when used in relatively dense sensc
networks as a complement for the existing sensor deployment methods. (5) When number of deploye
nodes is less thatn?, the performance of SMART is reduced, since more rounds are needed and
balanced final state cannot be achieved. (6) In sparse network, SMART may need more rounds tha
VOR to achieve a balanced degree, but it still beats VOR in terms of standard deviation.

27



Standard deviation
Number of rounds

0 . . . . . . . . 5 . . . " " " " "
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of nodes Number of nodes

(a) Standard deviation (b) Round number

180000

T g T T 2e+06
OPT —— A
SMART(l) -
SMART(g')
SMART(g) —=
140000 [SMART(m,3) ---=--

160000 | 1.8e+06 |-

1.6e+06

1.4e+06 F-)
120000 - 126406 | )
1le+06
800000
600000
400000
200000
0 e ——— 0 —
100 200 300 400 500 600 700 800 900 1000 1 2 3 4 5 6 7 8 9 10
Number of nodes Normal distribution parameter

100000

80000 |

Total moving distance
Total moving distance

60000 |

Y
40000

2000t

(c) Moving distance, uniform (d) Moving distance, normal

Figure 12: Property analysis of SMART and VOR; comparatione of variations of SMART.

7 Conclusion

In this paper, we have proposed a scan-based movement-assisted sensor deployment algorithm, whi
is a hybrid approach of local and global methods. We have considered a unique issue called commt
nication hole, where certain sensing areas have no deployed sensors. A method of seed-planting h
been proposed to move one senor to each uncovered area before the scanning process. We also deve
an optimal solution which is the Hungarian method based. Simulation results show that the propose
method can achieve even deployment of sensors with modest costs. In the future, we will performr
in depth simulation on energy consumption of sensor deployment algorithms and design some intra
cluster balancing algorithms to achieve high resolution load balancing. We also plan to consider the
case where only parts of the sensors are mobile. In this case, the ultimate goal is to maximize th
minimum load of these grids. This is a more general measurement for the balance degree of the fine
distribution.

28



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

I. F. Akyildiz, W. Su, Y. Sankrasubramaniam, and E. Cayirci, “A survey on sensor netwolk&E
Communication Magazin@p. 102—-114, August 2002.

D. E. Culler and W. Hong, “Wireless sensor network§@mmunications of the ACMol. 47, no. 6, pp.
30-33, June 2004.

G. T. Sibley, M. H. Rahimi, and G. S. Sukhatme, “Robomote: A tiny mobile robot platform for large-scale
sensor networks,” iProceedings of IEEE International Conference on Robotics and Automation (JCRA)
2002.

O. Khatib, “Real time obstacle avoidance for manipulators and mobile rodotefnational Journal of
Robotics Resear¢hol. 5, no. 1, pp. 90-98, August 1986.

G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor deploymemfbaeedings of IEEE
INFOCOM, March 2004.

Y. Zou and K. Chakrabarty, “Sensor deployment and target localization based on virtual forces,” in
Proceedings of IEEE INFOCOMMarch 2003.

M. Locateli and U. Raber, “Packing equal circles in a square: a deterministic global optimization ap-
proach,” Discrete Applied Mathematicsol. 122, pp. 139-166, Octobor 2002.

A. Howard, M. J. Mataric, and G. S. Sukhatme, “An incremental self-deployment algorithm for mobile
sensor networks,Autonomous Robots, Special Issue on Intelligent Embedded SySegtesmber 2002.

G. E. Blelloch, “Scans as primitive parallel operationdE2EE Transactions on Computengol. 38, no.
11, pp. 1526-1538, November 1989.

J. Albowicz, A. Chen, and L. Zhang, “Recursive position estimation in sensor networkrbaeedings
of IEEE ICNP, pp. 35-41.

N. Bulusu, J. Heidemann, and D. EstrirGPs-less low cost outdoor localization for very small devices,”
IEEE personal communications, Special Issue on Smart Spaces and Envirpyohéhtno. 5, pp. 28-34,
Octobor 2000.

A. Howard, M. J. Mataric, and G. S. Sukhatme, “Relaxation on a mesh: a formation for generalized
localization.,” inProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) 2001.

T. L. Casavant and J. G. Kuhl, “A communication finite automata approach to modeling distributed
computation and its application to distributed decision-makingEE Transactions on Computengol.
39, no. 5, pp. 628-639, May 1990.

29



[14] G. Cybenko, “Load balancing for distributed memory multiprocessodsirnal of Parallel and Dis-
tributed Computingvol. 7, pp. 279-301, 1989.

[15] H. C. Linand C. S. Raghavendra, “A dynamic load balancing policy with a central job dispatcher (Ibc),”
IEEE Transactions on Software Engineerjngl. 18, no. 2, pp. 148-158, February 1992.

[16] L. M. Ni, C. W. Xu, and T. B. Gendreau, “A distributed drafting algorithm for load balancingEE
Transactions on Software Engineerjngl. 11, no. 10, pp. 1153-1161, Octobor 1985.

[17] C. Z. Xu and F. C. M. Laul.oad Balancing in Parallel Computer&luwer Academic Publishers, 1997.

[18] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja, “Sensor deployment strategy fo
target detection,” ilProceedings of WSNAR002.

[19] S. Dhillon, K. Chakrabarty, and S. lyengar, “Sensor placement for grid coverage under imprecise detec-
tions,” in Proceedings of International Conference on Information Fusiio?2.

[20] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure in wireless ad-hoc sensor net-
works,” in Proceedings of Mobicon2001.

[21] D. Du, F. Hwang, and S. Fortune, “Voronoi diagrams and delaunay triangulatigoslidean Geometry
and Computersl992.

[22] G.Wang, G. Cao, T. La Porta, and W. Zhang, “Sensor relocation in mobile sensor netwofkgtaed-
ings of IEEE INFOCOM2005.

[23] G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor deploym&iE Transactions on
Mobile Computingvol. 5, no. 6, pp. 640-652, 2006.

[24] “http://www.darpa.mil/ato/progarms/shm/index.html,” .

[25] S. Chellappan, X. Bai, B. Ma, and D. Xuan, “Mobility limited flip-based sensor networks deployment,”
in Proceedings of IEEE MAS3005.

[26] “Dictionary of algorithms and data structures,” 2005, http://www.nist.gov/dads/HTML/munkresAssignment
.html.

[27] C. H. Papadimitriou and K. SteiglitzCombinatorial optimization, algorithms and complexitipover
publicationsINC, 1998.

[28] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient
approach,” irProceedings of IEEE INFOCOMJiarch 2004.

30



