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Abstract—In wireless sensor networks (WSNs), a good In general, two methods can be used to enhance the
sensor deployment method is vital to the quality of coverageincremental sensor deploymeidmovement-
service (QoS) provided by WSNs. This QoS dependsgassisted sensor deploymelmicremental self-deployment
on the coverage of the monitoring area. In WSNs with 141 incrementally deploys additional sensors, usually

locomotion facilities, sensors can move around and self- one-at-a-time, with each node using data gathered from
deploy to ensure coverage and load balance, where each

unit of monitoring area is covered by the same number previously deployed nodes to determine its optimal loca-

of sensors. The movement-assisted sensor deploymentiOn- Movement-assisted sensor deployment [5], on the
deals with moving sensors to meet coverage and loadOther hand, uses a potential-field-based approach to move
balance requirements. In SMART [1], various optimization €Xisting sensors by treating sensors as virtual particles,
problems are defined to minimize different parameters, subject to virtual forces. Some extended virtual force
including total moving distance, total number of moves, methods are proposed in [6], [7] and [8], which are
communication/computation cost, and convergence rate. In hased on disk packing theory [9] and the virtual force
this paper, we focus on minimizing total moving distance fje|4 concept from robotics [4]. Basically, the movement-
and propose an optimal, but centralized solution, based on . ¢ it sensor deployment deals with moving sensors
the Hungarian method. This solution is illustrated in an .

to ensure coverage and then load balance if needed.

application where the monitoring area is a 2-D grid-based X -
mesh. We then propose several efficient, albeit non-optimal, NOte that here load balance implies coverage and hence

distributed solutions based on the scan-based solution in it iS @ stronger requirement. To achieve coverage (and
[1]. Extensive simulations have been done to verify the load balance), various optimization problems can be
effectiveness of the proposed distributed solutions. defined to minimize different parameters, including total
Index Terms— Dimension exchange, Hungarian method, moving distance, total number of moves, communica-
load balance, scan, sensor coverage, sensor deploymention/computation cost, and convergence rate.
wireless sensor networks. The amounts oftost and delay are usually used as
measures of all schemes for achieving a balanced state.
The cost consists of three components: the mechanical
movement of each sensor, computation of each sensor,
Wireless sensor networks (WSNSs) [2], [3] cOMang the electronic communication of each sensor. The
bine processing, sensing, and communications to foggst of mechanical movement is dominant and can be
a distributed system capable of self-organizing, selfieasured by the total moving distance and, to a lesser
regulating, and self-repairing. The efficiency of a sensggtent the number of moves. The electronic communi-
network depends on the coverage of the monitoring are@tion depends on both the number of transmissions and
Although, in general, a sufficient number of sensoffe size of message in each transmission. Computation
are used to ensure a certain degree of redundancy,dyenerally minimal unless a sophisticated computation

coverage so that sensors can rotate between active ess is used. Delay is measured as the time (steps)
sleep modes, a good sensor deployment is still nee ded to achieve a balanced state.

to balance the workload of sensors. By load balance,; SMART [1], Wu and Yang related the sensor

same number of sensors. cessing and pointed out their differences. For example,
This work was supported in part by NSF grants CCR 032974H) WSNS, both the moving distance and the number of
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consumption to start or stop a move. They proposeddstance. Simulation results are presented in Section 5,

scan-based solutiothat does not resort to global (loadand the paper concludes in Section 6.

information. This solution can achieve load balance and

minimize total moving distance of sensors in 1-D arrays. Il. PRELIMINARIES AND RELATED WORK

One unique issue in WSNs called the communicationyye first review some related work on general load

hole problem was also addressed. balance schemes, followed by an overview of existing
In this paper, we focus on load balance solutions {Jork on movement-assisted sensor deployment with a

The monitoring area is a 2-D grid-based mesh (simply

palled az2-D mesh)..We flrst_ pro_wde an optimal solutloR_ General load balance schemes

in 2-D meshes. This solution is based on the classic i -
Hungarian method, but requires global information. we General load balance algorithms can be classified as
then enhance the scan-based solution without resortlRG2! (Such as iterative nearest neighbor exchanging [12])

to global information, but with relatively competitive®1d global (such as direct mapping [13]). The global
results in terms of total moving distance. approach relies on global information which is usually

The contributions of this paper are as follows: not scalable. Local algorithms can be either deterministic

1) We systematically discuss the drawback of existirff Stochastic. Diffusion and dimension exchange are
movement-assisted sensor deployment in Wwsndwo widely used local deterministic methods based on

2) We propose an optimal load balance solution basggrative n(_-:‘are'st neighbor exchange. _
on the classic Hungarian method that achievesln the diffusion method [14], the balancing procedure
minimum total moving distance is divided into a sequence of synchronous steps. At each

3) We extend the scan-based solution to reduce to?z;?p’ each node interacts and exchanges load with all its

moving distance without resorting to global infor_nelghbors. In the dimension exchange method [15], the

mation. edges of the graph are colored such that no two adjacent

4) We present several further extensions and discfs%ges have Fhe same color. A dimension”is then defined
various trade-offs among total moving distancéS 2 collection of edges with the same color. At each
number of moves, and converging speed iteration, one particular color (dimension) is considered

5) We conduct extensive simulations and compa?@d every two adjacent nodeésand j connected by an _
results of the proposed extended scan-based ggge with the selected color exchange and balance their
lutions with the optimal solution load. Both methods are iterative and are based on nearest

The following assumptions are used in this papeE?'?%b?.r egchan%e.dAltlhougI]h nt?] |(rj1for?1at[[9n on tlr?add
(1) The monitoring and deployment area is anx n . IStribu |qn |?_neet € mb ocaf me g S, ltera |v_e rrV:/eSNo S
grid, with each grid of sizer x r. In a 2-D mesh, incur a significant number of rounds (moves in S).

each grid point at positiorii, j) has four neighbors at _
positions: (i — 1, ), (i, — 1), (i,5 + 1), and (i + 1, j). B. Movement-assisted sensor deployment
Among existing approaches, TTDD [10] and GAF [11] The sensor placement issue has been widely studied
use geographic location to partition the network into r@cently [16], [17], [18]. Random placement of sensors
2-D mesh. (2) Each sensor has position information anthy not satisfy the deployment requirement due to
has uniform sensing rangg2r and two transmission the hostile deployment environment. Two methods can
ranges+/2r (for intra-grid communication) and/5r be used to enhance the coverage: incremental sensor
(for inter-grid communication). (3) The sensor networlleployment and movement-assisted sensor deployment.
is sufficiently dense so that each grid point (cluster) In incremental sensor deployment [4], nodes are de-
has at least one sensor. Each grid point has one legadleyed one by one, using the location information of
(clusterhead) to coordinate activities with leaders of fopreviously deployed nodes to deploy the current one.
neighbors. This algorithm is not scalable and is computationally
The remainder of the paper is organized as followsxpensive. Most existing movement-assisted sensor de-
Section 2 reviews some existing methods on movemepteyment protocols rely on the notion of virtual force
assisted sensor deployment, including SMART, and r® move existing sensors from an initial unbalanced
lated load balance approaches in parallel processistate to a balanced state. These protocols are similar to
Section 3 proposes an optimal solution based on gloledarest neighbor exchanging in load balancing. Sensors
information. Section 4 presents several extended scare involved in a sequence of computation (for a new
based solutions aiming to minimizing the total movingosition) and movement.



In [8], Zou and Chakrabarty proposed a centralized 5|5| 6|5] 9 6/6|/6/6|6 5/5|/5/5|5
virtual force based mobile sensor deployment algorithm5 | 5| 5| 5|5 5/5/5|/5|5 5/5/5|/5|5
(VFA), which combines the idea of potential field and|5|4|8|3|5] 5|/5|/5[(5|5 5|/5|/5(5|5
disk packing [9]. In VFA, there is a powerful clusterhead,| 4 | 5|2 |5 | 4 41414|4]4 5(5]|5|5]|5
which will communicate with all the other sensors,|5|5|5|5|5 5/5(5|5|5 5(5/5|5/|5
collect sensor position information, and calculate forcest 2 3 ¢ s

(b) ©
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and desired position for each sensor.
In [6], Wang, Cao, and La Porta developed a novel . o

distributed self-deployment protocol for mobile sensor§'d: - An ideal case for SMART: (a) initial deployment, (b) after

o . fow scan, and (c) after column scan.

They used Voronoi diagrams [19] to find coverage holes

in the sensor network, and proposed three algorithms,

VEC (Vector-based), VOR (Voronoi-based), and Min- S

. . number of sensors of a 1-D array, which is a row or

imax, to guide sensor movement toward the COVETalSlumn of the given 2-D mesh. Since each grid position

hole. When applied to randomly deployed sensors, theasrgad are knowgn average Ioad.information cgan bz easil

algorithms can provide high coverage within a short time. * , averag y

and limited moving distance. If the initial distributioncaICUIated and distributed as can the overload/underload

of the sensors is extremely l.meven disconnection msituation of each ordered subset corresponding to a prefix

occur, thus, the Voronoi polygon constructed may n the ordered set.

be accurate enough, which results in more moves and" SMART, the 2-D meshiis partitioned into 1-D arrays

larger moving distance. They adopted the optimizatidly "oW and by column. Two scans are used in sequence:
of random scattering of some sensors to cover hol@9€ for all rows, followed by the other for all columns.
The termination condition of their algorithms is coverag@/1thin €ach row and column, the scan operation is used
instead of load balance. to calculate the average load and the_n to _determlne Fhe
In [7], Wang, Cao, and La Porta further explored th%mount of overload and u_nderload in grids. Lo_ad IS
motion capability of sensors for relocation to deal witﬁh'ﬂed_ from overloade_d grids to underloaded grids in
sensor failure or respond to new events. The algorithf! optlmal way to achieve a balgnced state. _ _
contains two phases. The first one is redundant sensof-onsider the 1-D array of grids where grid ID is
location, and the second is redundant sensor relocatifi€led following the sequence in the linear line. Let
A grid-quorum solution was proposed to quickly locat@® the prefix sum of the firstgrids, i.e.,v; = 3 wj.
the closest redundant sensors to the target area, whefd'@"n = 2j—1 w; is the total sum. Clearlyp = v, /n
sensor failure occurs. This solution uses the concept'®f€ average number of sensors in a balanced state, and
quorum to locate sensors with low message complexity, = /@ IS the prefix sum in the balanced state. Note that
Then a cascaded movement scheme was developed td @ real number which should be rounded to an integer
locate the located redundant sensors in a timely, efficieff/] f [@]. In a balanced statgw; — w;| < 1 for any
and balanced way. two grids in the 1-D array.
The scan algorithm works from one end of the array
to another (first scan) and then from the other end back
C. SMART: a scan-based approach to the initial end (second scan). The direction of the first
In SMART, a scan-based approach, a hybrid of locaweep is callegositive(with increasing order of grid ID)
and global is adopted. The sensor network is partitionadd that of the second sweepgative The first sweep
into ann xn 2-D mesh of grids. Each leader, in charge dfalculates the prefix sum;, where each clusterhead
communication with adjacent grids, knows the followingetermines its prefix sum; by addingv;,_; + w; and
information: (1) its grid’s position, in the currently forwardingv; to the next grid. The clusterhead in the last
processed row/column of the 2-D mesh, and (2) tiggid determinesy, andw = v, /n (load in a balanced
number of sensorsy;, in the grid. state) and initiates the second scan by sendinguout
A typical scan operation [20] involves a binary operduring this scan, each clusterhead determities- iw
tor @ and an ordered sétvy, w1, ..., w,_1], where each (load of prefix sum in a balanced state) basedwon
w; represents the number of sensors in a grid, and retup&ssed around and its own grid position
the ordered sdtug, (wo®wy), ..., (Wo Bw1D, ..., Dwy,)]. Knowing the load in the balanced state, each grid can
In SMART, only integer addition and boolean ANDeasily determine its “give/take” state. Specifically, when
operations are used for scan. Using integer addition, tiwg— w = 0, grid i is in the “neutral” state. Whem,; —
scan operation will return partial and total sums of the > 0, it is overloaded and in the “give” state; and when



TABLE |

while a column scan will balance the mesh in an optimal
THE SCAN PROCESS ON THE THIRD ROW OFIGURE 1.

way using a total moving distance 2.

[ il1[2][3]4]5]
wi |5 4]8]3]|5 [1l. AN OPTIMAL SOLUTION
v, | 5] 9 [ 1720 25 _ _ , _ ,
% 5110165 20 25 This section starts with an optimal solution based on

the classic Hungarian method. Several possible central-
ized implementations of this method in WSNs are then

o _ discussed. Finally, potential drawbacks of this approach
w; —w < 0, it is underloaded and in the “take” stategre outlined.

Each grid in the give state also needs to determine the
number of sensors (load) to be sent to each directign:
for load in the positive direction (or simply give-right)
and —w; for load in the negative direction (give-left). ~ Let us consider thedge weighted matching problem
Based on the scan procedure, it is clear that in a complete bipartite grapl,, ,, with numbers as-

) sociated edges called weights. The objective is to find
i = min{w; —w,max{v; —7,0}} (1) 5 perfect matching (ofn pairs), such that the sum of
“w; = (w;—w) —w;” (2) the weights of edges in the matching is maximum (or
erHinimum).

The 2-D scan process involves a row scan follow Lo . .
by a column scan as shown in Figures 1 (b) and 1 (c For a maximization problem, consider the auction
y 9 roblem where each ofn bidders offers a price for

respectively. Table | shows details of the row scan on te%ch ofm products. Suppose each bidder will aet one
third row wherei is the column number. Only the grid P - SUpp 9

o . . ) . 2 “and only one product. The auctioneer wishes to assign
at column 3 is in the “give” state, since its load is higher . - ,

_ . . . a product to each bidder to maximize the total profit.
thanw = 5. For column 3,w3” = 2 will be assigned to

X . For a minimization problem, consider a building project
column 2 and~ w4 = 1 will be assigned to column 2. P g proj

. . . . requires several buildings to be built simultaneously. A
Similarly, a set of conditions can be given for “take . :
e ) number of contractors place their offers. We wish to
state:w; for take-right and~w; for take-left.

assign contractors to buildings so that the total cost of
“w; = min{w — w;, max{v;_; — 7;_1,0}} (3) 9getting the buildings done is minimized.
wi = (@ —w) = w; ) A naive approach to solve the matchlng problem_ is to
enumerate alln perfect matchings and find an optimal
The result of the 2-D scan process usually does nmte among them. A better solution called Hungarian
generate an ideal global balanced state as in Figureniethod exists. The following is the algebraic formu-
However, the maximum load difference between angtion for the matching problem. We let;;, (i,j =
two grids is bounded by 2. It is shown that the scans...,m), be a set of variablesn is the number of
based approach is optimal (in terms of both total movingdes in the node sets of the complete bipartite graph
distance and number of moves) for 1-D arrays, bl = (V,U, E), whereV, U are two node sets; is edge
not for 2-D meshes. In 2-D meshes, although the totdt. z;; = 1 means that the edge;, u;) is included in
number of moves is bounded by a factor of 2 compargéiee matching, whereas;; = 0 means not. An optimal
with the optimal number of moves, the total movingolution is to:
distance is unbounded.

A. Hungarian method

w

Example 1 Consider a2 x 2 mesh M[1,1] = Minimize X;jc;jx;
37M[172] = 17M[27 1] = 3, andM[Q,Q} = 5. A scan SUbject to Zj:l Tjj = 1 7= ]., oo, m (5)
on rows will change load distribution of the mesh to _
M[1,1] = 2, M[1,2] = 2, M[2,1] = 4, and M[2,2] = Yimrij=1 j=1L....m

4, and a scan on columns will balance the mesh toWith this definition, the bipartite graph problem is

%t[l{ 1|] :f i’ MI1,2] = 3, MFEQ’ 1= 3’tﬁnth[2’ 22 — I3.t' converted into a matrix problem. The rows of the matrix
otal of & moves occur, Nowever, the optimal SolUTiof) represent the nodes Wi, and the columns represent
requires only 2 moves from/[2, 2] to M[1,2] directly.

. the nodes inU. The value of entryc;; is the cost of
Example 2Consider a large 2-D mesh where all node ¥eij

555' ning node; to nodew,;.
have a load of 2 except/[i,j] = 3, M[i,j +d] =1, igning i u;

M[l +1,j] =1, and M[i + Lj+d = 3_- A rOW SCan  n honor of the Hungarian mathematicians Dég and E.
will balance the mesh with a total moving distard& Egenary who developed it.



Fig. 2. The node and edge weighted bipartite graph of Figure 1 with
“give” grids at the left-hand side and “take” grids at the right-hand

side. @ ®)

L . Fig. 3. (a) The edge weighted complete bipartite graph of Figure 2
There are several polynomial implementations for th@q () the optimal solution.

Hungarian method. Our implementation is based on

Munkres’ [21], which describes the manual manipulation

of a two-dimensional matrix by starring and priming represents the distance between the “give” and
zeros and by covering and uncovering rows and columns.  “take” grids in a matching pair.

In this method, the smallest entry in each row/column 3) A edge weighted perfect bipartite graph is derived
is subtracted from all the entries of that row/column by expanding each node with weighto & “clone”

to generate zero entries without changing the optimal nodes. The edge weight of clone nodes will inherit
solution. Then lines are drawn through each row or  from the original nodes.

column so that all the zero entries of the matrix are pgain, we use Figure 1 to illustrate the procedure. The
covered and a minimum number of such lines has begihal average in case is 5. There are three overloaded
used. If the number of covering lines s, an optimal nodes and five underloaded nodd$[3,3] = 3 means
assignment of zeros is possible. Otherwise, the smallggkrioaded by 3 units and/[1,2] = 1 is underloaded
entry not covered by any line is subtracted from all the, 1 unit. The edge weight is the Manhattan distance

entries in columns not covered by a covering columBetween two end nodes![i, j] and M][i’,j']. That is,
and added to all entries in rows covered by a covering, + Ay = |i — i'| + |j — j/|% For example, the

row. This step can be repeated until the optimal coverigige connectingV/[3,3] to M|[1,2] has a weight of
is found. Since the total cost of the matrix decreases Wih |n Figure 2, the node and edge weighted bipartite

every step, the optimal assignment of zeros can be foug}(éph shows weights of all edges connectivig3, 3] to
in a finite number of steps. underloaded nodes.

Another implementation [22] solves the problem in |n Figure 3 (a), the edge weighted complete bipartite
O(m?). This implementation applies the solution to maxgraph of Figure 2 is shown, where each node (overloaded
flow problem with some modifications. A correspondingr underloaded) with weight hask “clone” nodes. For
flow networkG can be defined for the bipartite graph  example,M[3, 3] has three clone nodes labeled from 1
introducing two new nodes andt. 2m edges are addedto 3. The Hungarian method is then applied to Figure 3
in the graph;m from s to every node i/ andm from (a) and the optimal result is shown in Figure 3 (b). The
every node inU to nodet. In this way, the maximum optimal result shows that/[5,5] (now with four clone
flow problem can be explored. nodes) needs to move one sensor to each/df, 2],

To use the Hungarian method to load balance W [5,2], M[2,3], and M4, 3]. The optimal matching of
WSNs, we need to first convert the 2-D mesh to Rigure 1 is also shown in the matrix of Figure 4 as in
complete bipartite graph using the follow procedure: the Munkres’ implementation where selected edges are
boxed.

1) Calculate the global average and determine h " ded
“give”, “take”, and “neutral” state of each grid. Note that the above method can easily be extended to

2) A node and edge weighted bipartite graph is cofgases where sensor can be moved to its diagonal neigh-
structed, where “give” and “take” grids appear Fpors (four in all). In this case, the edge weight is changed

t.he left and right han.d sides of the graph, I’(ESpeC-zThe general distance between two points is definef{ As:)* +
tively. The node weight corresponds to amo_urﬂhy)k)l/’“. Whenk = 2, it is Euclidian distance, and when= 1,
of overload and underload, and the edge weigiats Manhattan distance.



8 /7 555353 movement-assisted sensor deployment. Therefore, solu-
7/ 755 5 3 5([3 3 tions based on local or limited global (such as prefix sum
6/ 7 5 5 5 3 3 3 in the scan-based method) is more desirable. However, an
51 7 5 5 5@ 5 3 3 optimal solution without using global information does
4 3335 3 3 3 not seem to be possible. In the next sep'uon, we will
look at several extended scan-based solutions where each
3\ 311 3111 - )
sensor has limited memory storage capacity.
2\ 3 1 13 1 11
1\3 113111 IV. EXTENDED SCAN-BASED SOLUTIONS
1 23 45 6 7 8

We consider two types of extension to the scan:

Fig. 4. (a) The matrix form of the edge weighted complete biparti tgreShOId_basedand hler_archlcal-based In threshold-
graph of Figure 3 with the minimum total cost 22. Based scan methods, “glve'_’ and “take” states depend not

only on the local average in a row/column but also on

the global average. In hierarchical-based scan methods,
to min{Az, Ay} + |Ay — Az| = max{Az, Ay}. The the 2-D mesh is partitioned into four submeshes level by
Hungarian method can be applied to WSNs with variolgvel and the scan-based method is applied in a bottom-
shapes of monitoring areas. In fact, it can also be used & fashion.
optimal matching in WSNs where the monitoring area

is a set of discrete targets [23]. A. Threshold-based scan methods

The cost of implementing the Hungarian method for - p I .
: : 3 ) In the original SMART, an “aggressive” approach is
load balance in WSNs i©(m?°), wherem is the amount .o ;
- used where a local “give” state in a row or column can
of overloads (underloads) which is bounded by trbe P ; . .
. be a global “take” state (as in Example 1). To avoid
number of sensors. Usually, the number of sensors is ML situati o I
: : ) IS situation, a “conservative” approach can be used
or two magnitudes higher than the number of grids ( . e ) ,
. . .to decide local “give” and “take” state based on global
However, the main problem of the Hungarian method lies
o : . . . : dverage.
in its centralized implementation as will be discussed In L . .
: We first introduce some new notations. Again, we
the next subsection. S
denotew; as the number of sensors in giidandv; the
. prefix sum of the first grids in a row (or column) in the
B. Implementations positive direction, i.e.p; = S5 w;. v, = Y wj is
The solution based on the Hungarian method is cethte total sum in the row (or column). Another negative
tralized, which is costly to implement in general irdirection prefix sum is exploited, wherg = >="_; w;,
WSNs. Here are some possible implementations. and v| = > j=1wj is also the total sum in the row
Suppose a BS (base station) is connected to tfo¥ column). The negative prefix sum is achieved in
WSN, it can act as the central controller to collect athe negative sweep where the average is sending out.
information from all leaders (clusterheads), execute thNow, w; = v, /n is the average number of sensors in a
optimal algorithm, and then inform all leaders aboutcal balanced state with respect to the current row (or
the sensor movement from the current location to tlelumn).v = >3, >°% ; w;; is the global total sum.
destination location. Thenw, = v/n? is the average number of sensors in a
Instead of direct communication between each leadgiobal balanced state. We defing, = |w,—;|/2 as the
and the BS, some spanning-tree-based approaches rogan of global and local balanced state. This approach
be applied. For example, the BS can broadcast its inteist.a compromise between conservative and aggressive
With the regular topology of 2-D meshes, broadcast capproaches.
be implemented efficiently without resorting to blind The proposed threshold-based scan method differs
flooding. However, information aggregation is needddom the original SMART in its definition of threshold
at each branch of the broadcast tree, although someused to determine the “give/take” state. Still, when
optimization methods can be used to construct a “bal; — w = 0, grid ¢ is in the “neutral” state. When
anced” tree in 2-D meshes with a minimum weight af; —w > 0, it is overloaded and in the “give” state; and
the maximum branch [24]. whenw; — w < 0, it is underloaded and in the “take”
In WSNSs, the (remote) BS is available only as astatew can be one of three possible choices: w,, and
application frontend rather than as a centralized coordiz,. Again,v; = iw is the the prefix sum in the balanced
nator for coordinating basic network activities, includingtate under the given threshaig andv;’ = (n—i+1)w
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Fig. 5. A4 x 4 sample network, total cos84 with SMART(]). 161011010 111111010
11|/ 9|99 11|11]10|10
12d 1[1] 1] [10d10[10]10] [75]10]10[10 1119/9]9} |10]10) 9
111 001011 1/ 9(9| 9 10|10| 9
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(@ (b) © Fig. 7. A4 x4 sample network, total cos48 with SMART (m, 3).
27|26|26|26| |11|10|10|10| |10|10/10|10
413|133 11|10|10|10| |10|10|10|10 scans. However, in these scans there are no actual sensor
3133 11|10] 10/ 10| [10]10]10[ 10 movements. Movements occur ongeis derived from
sl71 717 10 9] 99 10110/ 10/ 10 w,. Step (3) is needed since the result of step (2) cannot

guarantee a globally balanced state. Whes w,,,, one
variation of the algorithm is to repeat step (2) a constant
(¢) number of times before applying step (3).

Fig. 6. A4 x 4 sample network, total cost52 with SMART(g). To simplify the notion, we use SMARY],
SMART(), and SMART(,c) to represent the

. . L threshold-based scan that uses global average, local
is that of the negative directiom should be rounded to average (the original SMART), and mean of global

an integer. ) .
In the original SMART, the threshold is based or‘%md local average, respectively. in SMART(m, c)

— wi B N corresponds to the number of iterations of step (2).
the local averagew;, when “give” and “take” states When pc is 1, SMART(n.¢) is simply written Zs()
are balanced in a row (or column). With a changingMART(m) ’ ’ Pl
threshold, such a balance is no longer held. That is, _. ' ) . .

wyi “ w : Since the Hungarian method is a global method, it can
there could be more “give” than “take” grids and V|c%e done in one ?ound As mentionSd above, SMART(
versa. Thereforew;” for load in the positive direction : ' ) ’
can be done in two rounds, which means one row scan

(or simply give-right) and—w; for load in the negative

direction (give-left) are changed as follows: a grid is iﬁmd one column s<|:an. SMAPgl)(n((ajectis 4 rounsls..On(i

“give” state if its value is over the given threshoid row SC?‘”’ one co u_mn scan, an . WO _rounds n step
g/] which can be viewed as applying SMARJ bere.

The amount of excessive load to be transferred to ART 4D 1 2 ds. We will ide th
right (or left) depends on the amount of underload to i (m, c) needs2c + 2 rounds. We will provide the
operc value in the simulation, which is quite small.

right (or left) provided that amount does not cause trh " e .
underload of the current node. More formally, we hav ote that the traditional diffusion method requires a large
' number of iterations to converge.

(d) C) ®

w;” = minf{w; —w, max{vj,, —vi11,0}} (6)  Figures 5, 6, and 7 are working procedures of
“w; = min{(w; — W) —w;, SMART(/), SMART(g), and SMART(n, 3) applied on a
max{(T=7 — vi_1),0}} 7 sampled x 4 mesh. In Figure 5, the result after row scan

is shown in (b), and column scan, in (c), the network is

The following steps are used in the proposeghlanced with the total moving distance 384. In Figure 6,

threshold-based scan: (b) and (c) are row and column scans using the global
1) If w # wy, determine global balanced valug.  average. Then SMARTY is applied in (d) and (e) as

2) Perform a row scan followed by a column scatlescribed in step (3). The resultant total moving distance
using the selected. is 352. Figure 7 is of SMART(, 3). (b) is the result of

3) If w # wy, repeat step (2) using = w;. first round which contains a row and a column scan.

wy in step (1) can be calculated during step (2]c) is second round, and (d) is the third round. Then

Basically, w, is determined after row and then columSMART(!) is applied to achieve the balanced state. The
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| Fig. 9. An example. (a) is initial network, (b) is first step of
. SMART(g), (c) is first step of H-SMARTY).

(1,2) and grid (1,4) each. (c) is the first step of H-
SMART, where grid(1, 1) contributes to grid1,2) and
Fig. 8. A sample 4-level hierarchical partition. grid (2,1). Grid (1, 4) will be covered by grid2, 4) later.
The total moving distance for this example drkt and

i i i i ) 72, for SMART(g) and H-SMART, respectively.
total moving distance is 348. The total moving distance

for this example using the Hungarian method is 350.
V. SIMULATION

In this section, we present the results of our simula-
. . tion of the proposed optimal movement-assisted sensor
In_ hlerarghlcal-based scan me_thods, the_2-D meshd'éployment method, and various heuristic local methods.
partitioned into four submeshes in a recursive way. The
row and then column scans are applied to each submesh
in a bottom-up fashion.

Suppose the 2-D mesh is2 x 2¥ mesh (called a A Simulation environment
level-k mesh) and is partitioned into fo@*~* x 28! Al approaches are tested on a custom simulator. We
submeshes. Each submesh is then recursively partitioed up the simulation in &,000 x 5,000 monitoring
until the original 2-D mesh is partitioned inB3¢ 2*~%x  area, which is the target field. Sensors can be deployed
2F=4 submeshes aref~ is sufficiently small. Figure 8 in this area following a given distribution. We use

B. Hierarchical-based scan methods

shows such a 4-level hierarchical partition. three kinds of distribution as the initial deployment of
The following steps are used in the proposesensors. The first is random distribution where sensors

threshold-based scan: are randomly deployed in the entire area. The second
1) If @ # w;, determine global balanced valug. is one-cluster distribution, where the sensors follow a

2) For ¢ = 0 to d, perform a row scan followed bynormal distribution to form one clustered area. The
a column scan using the selectadon 2¥=9=% x  third is multiple-cluster distribution, where sensors are
2k—d—=i sybmeshes. deployed to form several clustered areas of different

3) If w # w;, usew = w; to perform a row scan sizes. Figure 10 shows samples of the initial distribution.
followed by a column scan on th# x 2 mesh. (a) is random distribution, and (b) is multiple-cluster

This hierarchical approach is another heuristic aglistribution (4 sensor clusters). The tunable parameters

proach where the excessive load in a “give” state i our simulation are as follows.
more likely to be moved to a nearby “take” state than 1) The number of grids x n. We use 16 as the value
to other “take” state. In this way, cases like Example 2 of n, when H-SMART is analyzed, antD in the

will be reduced. A simple analysis is given in Appendix. rest simulation.
H-SMART needsd + 2 iterations for &2* x 2¥ mesh. In  2) The number of sensors. We varym’s value from
the firstd + 1 iterations, the selecte@ can bew,, w;, 100 to 1000. Whem is 16, m varies from256 to

or w,,, and 2 rounds are needed for each iteration. In 1280 with the step256.

the last iteration, one row scan and one column scan (23) The normal distribution parameterin one-cluster

rounds) are executed to ensure a globally balanced state. distribution.c is the standard deviation of the nor-

Therefore, H-SMART need(d + 1) + 2 rounds totally. mal distribution for the initial deployment, which
Figure 9 shows a sample x 4 mesh. (b) shows the can control the density degree of the sensor clus-

first step of SMART(). We can see that the first row tering. We use 1 to 10 as its values. Wherns

is balanced with grid1, 1) contributes 9 nodes to grid 10, around50% sensors are 0% region of the



X

(@) Random distribution (b) Multiple-cluster distribution = 4)

Fig. 10. Samples of different initial sensor distribution & 500).

area. Whernr is 1, around8% sensors are in0% to achieve final balanced state, the moving distance is
region of the area. smaller. We can also see that, the performance does not
4) The number of sensor clusters in multiple-clustashange much after three iterations. Therefore, we use 3
distribution p. We varyp from 1 to 10. For each as the value ot in the following simulation.
sensor cluster, the normal distribution parameter is
randomly selected from 1 to 10.
5) The number of iterations in H-SMART algorithm

Figure 12 illustrates the performance of the optimal
solution (OPT), based on the Hungarian method, and
¢. We use simulation to find a proper value for its extensions, the distributed solutions in random dis-

The.performance metrics are (a) deployment quali ribution. The distributed solutions include SMARY,(
and (b) cost. Deployment quality is shown by the balanigMAvlieT(sgi)r’niTaiesmg\RsTl\(/In th%cﬁﬁt;;hieg&igr;ep
degree measured by the standard deviation of Seny t'i1out step (3). (a) is the resultant standard deviation

EuThb:r:nlenr a”égr?sgrrlr?st.ioae?r!o{er?rigtocfojf/telfalrr?nii)s\z;% mparison of them, which represents the balance de-
y gy ption, e. We can see that SMARf] has a very large

distance and also, to a less extent, the number of to %‘jndard deviation while SMART( SMART(s) and
moves. The moving distance of sensors is proportional

th i d so is th ber of (R/IART(m) have relatively smaller ones. The standard
€ energy consumption and so IS th€ number of MOVEG, j-4iqn of OPT is 0 (not shown in the figure). (b) is the

This is because sometimes, the startup of sensors m%}ﬁqparison of SMART(, SMART(g), and SMARTn)

cause some additional cost. Since the number of roun .
. : e can see that these three have comparative perfor-
which represents the convergence rate of the algorithms

are static except SMART, c), we only test the round mance. Since SMART]) is applied to both algorithms,

, ) the desired final balance degree is guaranteed, we do
number of SMART(x, c), and find the propet for it. not examine the performance of balance degree. Fig-

) _ ures 12 (¢) and (d) show the moving distance and
B. Simulation results number of moves in random distribution, respectively.
Figure 11 shows the resultant performance 6ffe can see that SMAR#®{) has the most moving
SMART(m, c) with different ¢ in both random and distance, while SMART{) has smaller moving distance
multiple-cluster distributions. We can see that in botfian SMART(). OPT has the smallest moving distance.
distributions, the total moving distance decreases witithough SMART(') has a comparative moving dis-
the growth ofc. This is because SMAR®{) balances tance with OPT, it will not be considered further since
the distribution to the median of global average artcannot balance the distribution. SMAR®] has the
local average, and after one iteration, the local averagwst number of moves. SMARJ) has the second
changes and the new median is generated for furth@rgest number of moves. SMARY) has an even smaller
balancing. Thus, more iterations lead to more balancedmber of moves than OPT. Because SMARRE@nN not
state and when SMARTY is applied, as in step (3),completely balance the distribution while OPT can.
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Fig. 12. Random distributionn(= 10).

Figure 13 shows the performance in multiple-clust&MART() the smallest. OPT has the best performance
distribution. (a) is the moving distance, and (b) is thiea both moving distance and number of moves.
number of moves. We can see that with the growth ) o
of the number of clusters, the total moving distance Figure 14 shows the performance in one-cluster distri-
decreases and the number of moves decreases sligiifion, where the normal distribution parametevaries
This is because the distribution tends to be balanced wiffM 1 t0 10 to represent different sensor clustering
more sensor clusters. SMARJ(and SMART(n) have degree. (a) is moving distance, and (b)_ls the number
smaller moving distance than SMARY.( SMART (m) of moves. With the growth of, the moving dlstanc_e
has the smallest among the three. The numbers of mof§§reases and the number of moves decreases slightly,

show the opposite. SMART() has the largest while 8 In Figure 13. This is because, wheris large, the
distribution is close to random distribution. The relative



11

1.55e+06 T T T T 1600 T T T T
OPT —— & OPTa——
1.5e+06 # SMART(l) - 1 1400 | SMART() - °
) SMART(g) =
1.45e+06 ISMART(m,3) &
1.4e+06 1200 ¢

1.35e+06
1.3e+06
1.25e+06
1.2e+06
1.15e+06
1.1e+06
1.05e+06

1000 *--.

800 | e Tk

600 T

,,,,,,,,,,,
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Total moving distance
Total number of moves

le+06 L L L L L L L L | 0 L L L L L L L L
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of sensor clusters Number of sensor clusters
(a) Moving distance (b) Number of moves

Fig. 13. Multiple-cluster normal distributiom(= 10, m = 500).

2e+06

1600

& OPTo——
| SMART(l) —x—
1400 | gMART(g) -~
SMART(m,3)a
1200 |

1.8e+06 |-
1.6e+06
1.4e+06
126406 |y
le+06
800000 r

1000 -

800 F

| R TR

Total moving distance
Total number of moves

600000 ~ X
awol ]
400000
200000 | 200 -
0 . . . . . . . . 0 . . . . . . . .
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Normal distribution parameter Normal distribution parameter
(a) Moving distance (b) Number of moves

Fig. 14. One-cluster normal distribution & 10, m = 500).

performance of SMART], SMART(g), and SMART{n) distance and the number of moves. (e) and (f) are results
in the term of moving distance and number of movdsom one-cluster distribution. These results consist with
are similar with that of Figure 13. However, in onethose in Figure 14, and H-SMART further increases the
cluster distribution, the moving distance of SMARJ( performance of SMART() in both the moving distance
and SMART () is as small as that of OPT. and the number of moves.

i ) . Simulation results can be summarized as follows:
Figure 15 is the performance comparison of H-

SMART with other algorithms. We use 16 as the value of 1) The optimal solution, which uses the Hungarian
n, thus H-SMART takes 4 levels. The number of nodes method, has the best performance in both the mov-
in random distribution varies from 256 to 1280, with ing distance, the number of moves, and the balance
the step 256. Both the moving distance and the number degree in almost all kinds of initial distribution.

of moves of all the algorithms are larger than those 2) In one-cluster distribution, SMARF] and
whenn is 10, because more grids makes the final distri- SMART(m) have close moving distance to OPT,
bution more balanced which needs more consumption. which is much smaller than that of SMARYJ(

In H-SMART, SMART(g) is used as the fundamental 3) In multiple-cluster distribution, SMART{) and
operation, because it has the best overall performance SMART(m) have smaller moving distance than
except OPT. (a) and (b) show the moving distance and SMART(/), but still much larger than that of OPT.
the number of moves in random distribution. We can 4) In random distribution, SMART{) has better
see that H-SMART further reduces the moving distance  moving distance than that of SMARJ( but

of SMART(m), and its number of moves is between SMART(m) has the largest moving distance.
those of SMART§) and SMART(). (c) and (d) are 5) In all distributions, SMART§) and SMART )
results of multiple-cluster distribution. H-SMART has have larger numbers of moves than that of
better performance than SMART] in both the moving SMART(]). This is because they employ a step-
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Fig. 15. Comparison of H-SMART with other algorithms € 16, m = 512 except (a) and (b)).

by-step movement to avoid excessive movemenbased approach, and the other one is a hierarchical-
6) The iteration number of SMARTY{) is as small as based method. The simulation results show that the
3 to achieve a stable performance. optimal solution achieves best performance in all kinds
7) H-SMART further reduces the moving distance obf initial distributions. Among the local solutions, the
SMART(m) without improving of the number of hierarchical-based algorithm has the best performance,
moves in most distributions. and the extended SMART algorithms have better per-
formance than the original SMART in total moving
distance, especially in one-cluster distribution, where its
total moving distance is as low as that of the optimal
We present in this paper an optimal solution to théplution. In our future work, we will develop other
movement-assisted sensor deployment problem. This gfovement-assisted sensor deployment methods, which

lution is implemented using global network informationare local and can achieve a performance close to the
We also consider several heuristics without global iptimal one.

formation. One is based on extending SMART, a scan-

VI. CONCLUSIONS



(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

13

REFERENCES level 3
. level 2
J. Wu and S. Yang,SMART: A scan-based movement-assisted
sensor deployment method in wireless sensor networks,” in level 1
Proceedings of INFOCOM2005.
I. F. Akyildiz, W. Su, Y. Sankrasubramaniam, and E. Cayirci, “A level 0

survey on sensor networks[EEE Communication Magazine

pp. 102-114, August 2002.

D. E. Culler and W. Hong, “Wireless sensor networks,kig 16. A 4-level full tree as a 1-D projection of Figure 8.
Communications of the ACMol. 47, no. 6, pp. 30-33, June

2004.

A. Howard, M. J. Mataric, and G. S. Sukhatme, “An incre-

mental self-deployment algorithm for mobile sensor networks[20] G. E. Blelloch, “Scans as primitive parallel operationtE2EE
Autonomous Robots, Special Issue on Intelligent Embedded Transactions on Computersol. 38, no. 11, pp. 1526-1538,

SystemsSeptember 2002. November 1989.

O. Khatib, “Real time obstacle avoidance for manipulators arlg1] “Dictionary of algorithms and data structures,” 2005,
mobile robots,” International Journal of Robotics Research http://www.nist.gov/dads/HTML/munkresAssignment.html.

vol. 5, no. 1, pp. 90-98, August 1986. [22] C. H. Papadimitriou and K. SteiglitZZombinatorial optimiza-

G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor  tion, algorithms and complexity Dover publications,INC,
deployment,” inProceedings of INFOCOMMarch 2004. 1998. _ _

G. Wang, G. Cao, T. La Porta, and W, Zhang, “Sensor relocatié®3] M. Cardei, J. Wu, M. Lu, and M. Pervaiz, “Maximum network
in mobile sensor networks,” ifProceedings of INFOCOM lifetime in W|reless. sensor networ.ks with adjustable sensing
2005. ranges,” inProceedings of IEEE WiMq2005.

Y. Zou and K. Chakrabarty, “Sensor deployment and targ&4l T--S. Chen, Y.-C. Tseng, and J.-P. Sheu, “Balanced spanning
localization based on virtual forces,” iroceedings of INFO- t_rees in complete_ apd incomplete star grapHEEE Transac-
COM. March 2003, tion on Parallel Distributed Systemwol. 7, no. 7, pp. 717-723,

M. Locateli and U. Raber, “Packing equal circles in a square: a 1996.

deterministic global optimization approachDiscrete Applied

Mathematicsvol. 122, PP. 139-166, Octobor 2002. APPEND|X

F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data . .
dissemination model for large-scale wireless sensor networks,” IN H-SMART, we say a submesh covers a “give” grid
in Proceedings of MobiCOM2002. and a “take” grid if both grids are within the submesh.
Y. Xu, J. Heidemann, and D. Estrin, "Geography informeqyje show that this smallest submesh in H-SMART is

energy conservation for ad hoc routing,” &CM/IEEE In- .
ternational conference on Mobile Computing and Networkind’e""lted to the Manhattan distance between these two

2001. grids.
T. L. Casavant and J. G. Kuhl, “A communication finite Let M[i, j] andM[i, '] be a pair of “give” and “take”

automata approach to modeling distributed computation and } ids. A is defined asAz + Ay = |i — i Y
application to distributed decision-makindEEE Transactions %f .'d h I b+ ‘% ‘ . ‘ +A’J J ‘
on Computersvol. 39, no. 5, pp. 628-639, May 1990. onsider the smallest submesh coveriny a A square.

H. C. Lin and C. S. Raghavendra, “A dynamic load balancing0 Simplify the discussion, we assume = 2*. By
policy with a central job dispatcher (Ibc)JEEE Transactions placing the square to every positive position of the

on Software Engineeringol. 18, no. 2, pp. 148-158, Februarymesh it is easy to see that the probability of the
1992. '

E. Luque, A. Ripoll, A. Cortes, and T. Margalef, “A distributedsma”eSt coverage submesh be_'ng a ldvelibmesh is
diffusion method for dynamic load balancing on parallel coml/2, a levelfk — 1) submesh is 1/4, and so on. In
puters,” inProceedings of 3rd Euromicro Workshop on Parallefact, we can consider a projection df x A square

and Distributed Processindl995. Ay A .
H. Rim, J. Jang, and S. Kim, “An efficient dynamic load baI-On s-axis {or y-axis). The problem becomes placing a

ancing using the dimension exchange method for balancing 4f€ (Of_the projection) tO' every position at !anGS of
quantized loads on hypercube multiprocessorsPiioceedings a full binary tree shown in Figure 16. In this figure,

of 13th International Parallel Processing Symposium and 108gch node in tree corresponds to a square of Figure 8.

Symposium on Parallel and Distributed Processith§99. . .
T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. Il:(faCh child node is a submesh of the submesh that

Saluja, “Sensor deployment strategy for target detection,” @Orresponds to its parent. Therefore, the expected size
Proceedings of WSNAR002. of the smallest coverage submeskfig! x 2¥+1, Since
S. Dhillon, K. Chakrabarty, and S. lyengar, “Sensor placemem/z < max{Az, Ay} < A, the expected size of the

for grid coverage under imprecise detections,”Proceedings PR “ S
of International Conference on Information Fusjd2002. smallest submesh that covers the give and “take ngdS

; 1 1

S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak$ between2* x 2% and 281 x 28F1 When A # 2F,
“Exposure in wireless ad-hoc sensor networks,Pioceedings suppose® < max{Az, Ay} < 28+, the expected value
of Mobicom 2001. for coverageAz x Ay rectangle is bounded between the

D. Du, F. Hwang, and S. Fortune, “Voronoi diagrams an k k k+1 k+1
delaunay triangulations,Euclidean Geometry and Comput;ers%neS for square® x 2% and square x 2 )

1992.



