
1

Optimal Movement-Assisted Sensor Deployment
and Its Extensions in Wireless Sensor Networks

Jie Wu and Shuhui Yang
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Email: jie@cse.fau.edu, syang1@fau.edu

Abstract— In wireless sensor networks (WSNs), a good
sensor deployment method is vital to the quality of
service (QoS) provided by WSNs. This QoS depends
on the coverage of the monitoring area. In WSNs with
locomotion facilities, sensors can move around and self-
deploy to ensure coverage and load balance, where each
unit of monitoring area is covered by the same number
of sensors. The movement-assisted sensor deployment
deals with moving sensors to meet coverage and load
balance requirements. In SMART [1], various optimization
problems are defined to minimize different parameters,
including total moving distance, total number of moves,
communication/computation cost, and convergence rate. In
this paper, we focus on minimizing total moving distance
and propose an optimal, but centralized solution, based on
the Hungarian method. This solution is illustrated in an
application where the monitoring area is a 2-D grid-based
mesh. We then propose several efficient, albeit non-optimal,
distributed solutions based on the scan-based solution in
[1]. Extensive simulations have been done to verify the
effectiveness of the proposed distributed solutions.

Index Terms— Dimension exchange, Hungarian method,
load balance, scan, sensor coverage, sensor deployment,
wireless sensor networks.

I. I NTRODUCTION

Wireless sensor networks (WSNs) [2], [3] com-
bine processing, sensing, and communications to form
a distributed system capable of self-organizing, self-
regulating, and self-repairing. The efficiency of a sensor
network depends on the coverage of the monitoring area.
Although, in general, a sufficient number of sensors
are used to ensure a certain degree of redundancy in
coverage so that sensors can rotate between active and
sleep modes, a good sensor deployment is still needed
to balance the workload of sensors. By load balance,
we mean each unit of monitoring area is covered by the
same number of sensors.

This work was supported in part by NSF grants CCR 0329741,
CNS 0422762, CNS 0434533, ANI 0073736, and EIA 0130806.

In general, two methods can be used to enhance the
coverage:incremental sensor deploymentandmovement-
assisted sensor deployment. Incremental self-deployment
[4] incrementally deploys additional sensors, usually
one-at-a-time, with each node using data gathered from
previously deployed nodes to determine its optimal loca-
tion. Movement-assisted sensor deployment [5], on the
other hand, uses a potential-field-based approach to move
existing sensors by treating sensors as virtual particles,
subject to virtual forces. Some extended virtual force
methods are proposed in [6], [7] and [8], which are
based on disk packing theory [9] and the virtual force
field concept from robotics [4]. Basically, the movement-
assisted sensor deployment deals with moving sensors
to ensure coverage and then load balance if needed.
Note that here load balance implies coverage and hence
it is a stronger requirement. To achieve coverage (and
load balance), various optimization problems can be
defined to minimize different parameters, including total
moving distance, total number of moves, communica-
tion/computation cost, and convergence rate.

The amounts ofcost and delay are usually used as
measures of all schemes for achieving a balanced state.
The cost consists of three components: the mechanical
movement of each sensor, computation of each sensor,
and the electronic communication of each sensor. The
cost of mechanical movement is dominant and can be
measured by the total moving distance and, to a lesser
extent, the number of moves. The electronic communi-
cation depends on both the number of transmissions and
the size of message in each transmission. Computation
is generally minimal unless a sophisticated computation
process is used. Delay is measured as the time (steps)
needed to achieve a balanced state.

In SMART [1], Wu and Yang related the sensor
deployment to the load balance problem in parallel pro-
cessing and pointed out their differences. For example,
in WSNs, both the moving distance and the number of
moves are important because of relatively heavy energy
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consumption to start or stop a move. They proposed a
scan-based solutionthat does not resort to global (load)
information. This solution can achieve load balance and
minimize total moving distance of sensors in 1-D arrays.
One unique issue in WSNs called the communication
hole problem was also addressed.

In this paper, we focus on load balance solutions in
WSN that minimize total moving distance of sensors.
The monitoring area is a 2-D grid-based mesh (simply
called a 2-D mesh). We first provide an optimal solution
in 2-D meshes. This solution is based on the classic
Hungarian method, but requires global information. We
then enhance the scan-based solution without resorting
to global information, but with relatively competitive
results in terms of total moving distance.

The contributions of this paper are as follows:
1) We systematically discuss the drawback of existing

movement-assisted sensor deployment in WSNs.
2) We propose an optimal load balance solution based

on the classic Hungarian method that achieves
minimum total moving distance.

3) We extend the scan-based solution to reduce total
moving distance without resorting to global infor-
mation.

4) We present several further extensions and discuss
various trade-offs among total moving distance,
number of moves, and converging speed.

5) We conduct extensive simulations and compare
results of the proposed extended scan-based so-
lutions with the optimal solution.

The following assumptions are used in this paper:
(1) The monitoring and deployment area is ann × n
grid, with each grid of sizer × r. In a 2-D mesh,
each grid point at position(i, j) has four neighbors at
positions:(i− 1, j), (i, j − 1), (i, j + 1), and(i + 1, j).
Among existing approaches, TTDD [10] and GAF [11]
use geographic location to partition the network into a
2-D mesh. (2) Each sensor has position information and
has uniform sensing range

√
2r and two transmission

ranges
√

2r (for intra-grid communication) and
√

5r
(for inter-grid communication). (3) The sensor network
is sufficiently dense so that each grid point (cluster)
has at least one sensor. Each grid point has one leader
(clusterhead) to coordinate activities with leaders of four
neighbors.

The remainder of the paper is organized as follows:
Section 2 reviews some existing methods on movement-
assisted sensor deployment, including SMART, and re-
lated load balance approaches in parallel processing.
Section 3 proposes an optimal solution based on global
information. Section 4 presents several extended scan-
based solutions aiming to minimizing the total moving

distance. Simulation results are presented in Section 5,
and the paper concludes in Section 6.

II. PRELIMINARIES AND RELATED WORK

We first review some related work on general load
balance schemes, followed by an overview of existing
work on movement-assisted sensor deployment with a
focus on the scan-based approach proposed in SMART.

A. General load balance schemes

General load balance algorithms can be classified as
local (such as iterative nearest neighbor exchanging [12])
and global (such as direct mapping [13]). The global
approach relies on global information which is usually
not scalable. Local algorithms can be either deterministic
or stochastic. Diffusion and dimension exchange are
two widely used local deterministic methods based on
iterative nearest neighbor exchange.

In the diffusion method [14], the balancing procedure
is divided into a sequence of synchronous steps. At each
step, each node interacts and exchanges load with all its
neighbors. In the dimension exchange method [15], the
edges of the graph are colored such that no two adjacent
edges have the same color. A “dimension” is then defined
as a collection of edges with the same color. At each
iteration, one particular color (dimension) is considered
and every two adjacent nodesi and j connected by an
edge with the selected color exchange and balance their
load. Both methods are iterative and are based on nearest
neighbor exchange. Although no information on load
distribution is needed in local methods, iterative methods
incur a significant number of rounds (moves in WSNs).

B. Movement-assisted sensor deployment

The sensor placement issue has been widely studied
recently [16], [17], [18]. Random placement of sensors
may not satisfy the deployment requirement due to
the hostile deployment environment. Two methods can
be used to enhance the coverage: incremental sensor
deployment and movement-assisted sensor deployment.

In incremental sensor deployment [4], nodes are de-
ployed one by one, using the location information of
previously deployed nodes to deploy the current one.
This algorithm is not scalable and is computationally
expensive. Most existing movement-assisted sensor de-
ployment protocols rely on the notion of virtual force
to move existing sensors from an initial unbalanced
state to a balanced state. These protocols are similar to
nearest neighbor exchanging in load balancing. Sensors
are involved in a sequence of computation (for a new
position) and movement.
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In [8], Zou and Chakrabarty proposed a centralized
virtual force based mobile sensor deployment algorithm
(VFA), which combines the idea of potential field and
disk packing [9]. In VFA, there is a powerful clusterhead,
which will communicate with all the other sensors,
collect sensor position information, and calculate forces
and desired position for each sensor.

In [6], Wang, Cao, and La Porta developed a novel
distributed self-deployment protocol for mobile sensors.
They used Voronoi diagrams [19] to find coverage holes
in the sensor network, and proposed three algorithms,
VEC (Vector-based), VOR (Voronoi-based), and Min-
imax, to guide sensor movement toward the coverage
hole. When applied to randomly deployed sensors, these
algorithms can provide high coverage within a short time
and limited moving distance. If the initial distribution
of the sensors is extremely uneven, disconnection may
occur, thus, the Voronoi polygon constructed may not
be accurate enough, which results in more moves and
larger moving distance. They adopted the optimization
of random scattering of some sensors to cover holes.
The termination condition of their algorithms is coverage
instead of load balance.

In [7], Wang, Cao, and La Porta further explored the
motion capability of sensors for relocation to deal with
sensor failure or respond to new events. The algorithm
contains two phases. The first one is redundant sensor
location, and the second is redundant sensor relocation.
A grid-quorum solution was proposed to quickly locate
the closest redundant sensors to the target area, where a
sensor failure occurs. This solution uses the concept of
quorum to locate sensors with low message complexity.
Then a cascaded movement scheme was developed to re-
locate the located redundant sensors in a timely, efficient,
and balanced way.

C. SMART: a scan-based approach

In SMART, a scan-based approach, a hybrid of local
and global is adopted. The sensor network is partitioned
into ann×n 2-D mesh of grids. Each leader, in charge of
communication with adjacent grids, knows the following
information: (1) its grid’s position,i, in the currently
processed row/column of the 2-D mesh, and (2) the
number of sensors,wi, in the grid.

A typical scan operation [20] involves a binary opera-
tor ⊕ and an ordered set[w0, w1, ..., wn−1], where each
wi represents the number of sensors in a grid, and returns
the ordered set[w0, (w0⊕w1), ..., (w0⊕w1⊕, ...,⊕wn)].
In SMART, only integer addition and boolean AND
operations are used for scan. Using integer addition, the
scan operation will return partial and total sums of the
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Fig. 1. An ideal case for SMART: (a) initial deployment, (b) after
row scan, and (c) after column scan.

number of sensors of a 1-D array, which is a row or
column of the given 2-D mesh. Since each grid position
andn are known, average load information can be easily
calculated and distributed as can the overload/underload
situation of each ordered subset corresponding to a prefix
of the ordered set.

In SMART, the 2-D mesh is partitioned into 1-D arrays
by row and by column. Two scans are used in sequence:
one for all rows, followed by the other for all columns.
Within each row and column, the scan operation is used
to calculate the average load and then to determine the
amount of overload and underload in grids. Load is
shifted from overloaded grids to underloaded grids in
an optimal way to achieve a balanced state.

Consider the 1-D array of grids where grid ID is
labeled following the sequence in the linear line. Letvi

be the prefix sum of the firsti grids, i.e.,vi =
∑i

j=1 wj .
Thenvn =

∑n
j=1 wj is the total sum. Clearly,w = vn/n

is the average number of sensors in a balanced state, and
vi = iw is the prefix sum in the balanced state. Note that
w is a real number which should be rounded to an integer
bwc or dwe. In a balanced state,|wi − wj | ≤ 1 for any
two grids in the 1-D array.

The scan algorithm works from one end of the array
to another (first scan) and then from the other end back
to the initial end (second scan). The direction of the first
sweep is calledpositive(with increasing order of grid ID)
and that of the second sweepnegative. The first sweep
calculates the prefix sumvi, where each clusterheadi
determines its prefix sumvi by addingvi−1 + wi and
forwardingvi to the next grid. The clusterhead in the last
grid determinesvn and w = vn/n (load in a balanced
state) and initiates the second scan by sending outw.
During this scan, each clusterhead determinesvi = iw
(load of prefix sum in a balanced state) based onw
passed around and its own grid positioni.

Knowing the load in the balanced state, each grid can
easily determine its “give/take” state. Specifically, when
wi −w = 0, grid i is in the “neutral” state. Whenwi −
w > 0, it is overloaded and in the “give” state; and when
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TABLE I

THE SCAN PROCESS ON THE THIRD ROW OFFIGURE 1.

i 1 2 3 4 5

wi 5 4 8 3 5
vi 5 9 17 20 25
vi 5 10 15 20 25

wi − w < 0, it is underloaded and in the “take” state.
Each grid in the give state also needs to determine the
number of sensors (load) to be sent to each direction:w→i
for load in the positive direction (or simply give-right)
and←wi for load in the negative direction (give-left).

Based on the scan procedure, it is clear that

w→i = min{wi − w, max{vi − vi, 0}} (1)
←wi = (wi − w)− w→i (2)

The 2-D scan process involves a row scan followed
by a column scan as shown in Figures 1 (b) and 1 (c),
respectively. Table I shows details of the row scan on the
third row wherei is the column number. Only the grid
at column 3 is in the “give” state, since its load is higher
thanw = 5. For column 3,w→3 = 2 will be assigned to
column 2 and←w4 = 1 will be assigned to column 2.

Similarly, a set of conditions can be given for “take”
state:w←i for take-right and→wi for take-left.

→wi = min{w − wi, max{vi−1 − vi−1, 0}} (3)

w←i = (w − wi)−→ wi (4)

The result of the 2-D scan process usually does not
generate an ideal global balanced state as in Figure 1.
However, the maximum load difference between any
two grids is bounded by 2. It is shown that the scan-
based approach is optimal (in terms of both total moving
distance and number of moves) for 1-D arrays, but
not for 2-D meshes. In 2-D meshes, although the total
number of moves is bounded by a factor of 2 compared
with the optimal number of moves, the total moving
distance is unbounded.

Example 1: Consider a 2 × 2 mesh M [1, 1] =
3,M [1, 2] = 1,M [2, 1] = 3, and M [2, 2] = 5. A scan
on rows will change load distribution of the mesh to
M [1, 1] = 2,M [1, 2] = 2,M [2, 1] = 4, and M [2, 2] =
4, and a scan on columns will balance the mesh to
M [1, 1] = 3,M [1, 2] = 3, M [2, 1] = 3, andM [2, 2] = 3.
A total of 4 moves occur, however, the optimal solution
requires only 2 moves fromM [2, 2] to M [1, 2] directly.

Example 2: Consider a large 2-D mesh where all nodes
have a load of 2 exceptM [i, j] = 3, M [i, j + d] = 1,
M [i + 1, j] = 1, andM [i + 1, j + d] = 3. A row scan
will balance the mesh with a total moving distance2d,

while a column scan will balance the mesh in an optimal
way using a total moving distance 2.

III. A N OPTIMAL SOLUTION

This section starts with an optimal solution based on
the classic Hungarian method. Several possible central-
ized implementations of this method in WSNs are then
discussed. Finally, potential drawbacks of this approach
are outlined.

A. Hungarian method

Let us consider theedge weighted matching problem
in a complete bipartite graphKm,m with numbers as-
sociated edges called weights. The objective is to find
a perfect matching (ofm pairs), such that the sum of
the weights of edges in the matching is maximum (or
minimum).

For a maximization problem, consider the auction
problem where each ofm bidders offers a price for
each ofm products. Suppose each bidder will get one
and only one product. The auctioneer wishes to assign
a product to each bidder to maximize the total profit.
For a minimization problem, consider a building project
requires several buildings to be built simultaneously. A
number of contractors place their offers. We wish to
assign contractors to buildings so that the total cost of
getting the buildings done is minimized.

A naive approach to solve the matching problem is to
enumerate allm perfect matchings and find an optimal
one among them. A better solution called Hungarian
method1 exists. The following is the algebraic formu-
lation for the matching problem. We letxij , (i, j =
1, . . . , m), be a set of variables.m is the number of
nodes in the node sets of the complete bipartite graph
B = (V, U,E), whereV , U are two node sets,E is edge
set.xij = 1 means that the edge(vi, uj) is included in
the matching, whereasxij = 0 means not. An optimal
solution is to:

Minimize Σijcijxij

subject to
∑

j=1 xij = 1 i = 1, . . . , m
∑

i=1 xij = 1 j = 1, . . . , m

(5)

With this definition, the bipartite graph problem is
converted into a matrix problem. The rows of the matrix
x represent the nodes inV , and the columns represent
the nodes inU . The value of entrycij is the cost of
assigning nodevi to nodeuj .

1In honor of the Hungarian mathematicians D. Kőnig and E.
Egerv́ary who developed it.
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Fig. 2. The node and edge weighted bipartite graph of Figure 1 with
“give” grids at the left-hand side and “take” grids at the right-hand
side.

There are several polynomial implementations for the
Hungarian method. Our implementation is based on
Munkres’ [21], which describes the manual manipulation
of a two-dimensional matrix by starring and priming
zeros and by covering and uncovering rows and columns.
In this method, the smallest entry in each row/column
is subtracted from all the entries of that row/column
to generate zero entries without changing the optimal
solution. Then lines are drawn through each row or
column so that all the zero entries of the matrix are
covered and a minimum number of such lines has been
used. If the number of covering lines ism, an optimal
assignment of zeros is possible. Otherwise, the smallest
entry not covered by any line is subtracted from all the
entries in columns not covered by a covering column,
and added to all entries in rows covered by a covering
row. This step can be repeated until the optimal covering
is found. Since the total cost of the matrix decreases with
every step, the optimal assignment of zeros can be found
in a finite number of steps.

Another implementation [22] solves the problem in
O(m3). This implementation applies the solution to max-
flow problem with some modifications. A corresponding
flow networkG can be defined for the bipartite graphB,
introducing two new nodess andt. 2m edges are added
in the graph,m from s to every node inV andm from
every node inU to nodet. In this way, the maximum
flow problem can be explored.

To use the Hungarian method to load balance in
WSNs, we need to first convert the 2-D mesh to a
complete bipartite graph using the follow procedure:

1) Calculate the global averagēv and determine
“give”, “take”, and “neutral” state of each grid.

2) A node and edge weighted bipartite graph is con-
structed, where “give” and “take” grids appear at
the left and right hand sides of the graph, respec-
tively. The node weight corresponds to amount
of overload and underload, and the edge weight
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Fig. 3. (a) The edge weighted complete bipartite graph of Figure 2
and (b) the optimal solution.

represents the distance between the “give” and
“take” grids in a matching pair.

3) A edge weighted perfect bipartite graph is derived
by expanding each node with weightk to k “clone”
nodes. The edge weight of clone nodes will inherit
from the original nodes.

Again, we use Figure 1 to illustrate the procedure. The
global average in case is 5. There are three overloaded
nodes and five underloaded nodes.M [3, 3] = 3 means
overloaded by 3 units andM [1, 2] = 1 is underloaded
by 1 unit. The edge weight is the Manhattan distance
between two end nodesM [i, j] and M [i

′
, j

′
]. That is,

∆x + ∆y = |i − i
′ | + |j − j

′ |2. For example, the
edge connectingM [3, 3] to M [1, 2] has a weight of
3. In Figure 2, the node and edge weighted bipartite
graph shows weights of all edges connectingM [3, 3] to
underloaded nodes.

In Figure 3 (a), the edge weighted complete bipartite
graph of Figure 2 is shown, where each node (overloaded
or underloaded) with weightk hask “clone” nodes. For
example,M [3, 3] has three clone nodes labeled from 1
to 3. The Hungarian method is then applied to Figure 3
(a) and the optimal result is shown in Figure 3 (b). The
optimal result shows thatM [5, 5] (now with four clone
nodes) needs to move one sensor to each ofM [1, 2],
M [5, 2], M [2, 3], andM [4, 3]. The optimal matching of
Figure 1 is also shown in the matrix of Figure 4 as in
the Munkres’ implementation where selected edges are
boxed.

Note that the above method can easily be extended to
cases where sensor can be moved to its diagonal neigh-
bors (four in all). In this case, the edge weight is changed

2The general distance between two points is defined as((∆x)k +
(∆y)k)1/k. Whenk = 2, it is Euclidian distance, and whenk = 1,
it is Manhattan distance.
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to min{∆x,∆y} + |∆y − ∆x| = max{∆x,∆y}. The
Hungarian method can be applied to WSNs with various
shapes of monitoring areas. In fact, it can also be used for
optimal matching in WSNs where the monitoring area
is a set of discrete targets [23].

The cost of implementing the Hungarian method for
load balance in WSNs isO(m3), wherem is the amount
of overloads (underloads) which is bounded by the
number of sensors. Usually, the number of sensors is one
or two magnitudes higher than the number of grids (n).
However, the main problem of the Hungarian method lies
in its centralized implementation as will be discussed in
the next subsection.

B. Implementations

The solution based on the Hungarian method is cen-
tralized, which is costly to implement in general in
WSNs. Here are some possible implementations.

Suppose a BS (base station) is connected to the
WSN, it can act as the central controller to collect all
information from all leaders (clusterheads), execute the
optimal algorithm, and then inform all leaders about
the sensor movement from the current location to the
destination location.

Instead of direct communication between each leader
and the BS, some spanning-tree-based approaches can
be applied. For example, the BS can broadcast its intent.
With the regular topology of 2-D meshes, broadcast can
be implemented efficiently without resorting to blind
flooding. However, information aggregation is needed
at each branch of the broadcast tree, although some
optimization methods can be used to construct a “bal-
anced” tree in 2-D meshes with a minimum weight of
the maximum branch [24].

In WSNs, the (remote) BS is available only as an
application frontend rather than as a centralized coordi-
nator for coordinating basic network activities, including

movement-assisted sensor deployment. Therefore, solu-
tions based on local or limited global (such as prefix sum
in the scan-based method) is more desirable. However, an
optimal solution without using global information does
not seem to be possible. In the next section, we will
look at several extended scan-based solutions where each
sensor has limited memory storage capacity.

IV. EXTENDED SCAN-BASED SOLUTIONS

We consider two types of extension to the scan:
threshold-basedand hierarchical-based. In threshold-
based scan methods, “give” and “take” states depend not
only on the local average in a row/column but also on
the global average. In hierarchical-based scan methods,
the 2-D mesh is partitioned into four submeshes level by
level and the scan-based method is applied in a bottom-
up fashion.

A. Threshold-based scan methods

In the original SMART, an “aggressive” approach is
used where a local “give” state in a row or column can
be a global “take” state (as in Example 1). To avoid
this situation, a “conservative” approach can be used
to decide local “give” and “take” state based on global
average.

We first introduce some new notations. Again, we
denotewi as the number of sensors in gridi, andvi the
prefix sum of the firsti grids in a row (or column) in the
positive direction, i.e.,vi =

∑i
j=1 wj . vn =

∑n
j=1 wj is

the total sum in the row (or column). Another negative
direction prefix sum is exploited, wherev′i =

∑n
j=i wj ,

and v′1 =
∑n

j=1 wj is also the total sum in the row
(or column). The negative prefix sum is achieved in
the negative sweep where the average is sending out.
Now, wl = vn/n is the average number of sensors in a
local balanced state with respect to the current row (or
column). v =

∑n
i=1

∑n
j=1 wij is the global total sum.

Thenwg = v/n2 is the average number of sensors in a
global balanced state. We definewm = |wg−wl|/2 as the
mean of global and local balanced state. This approach
is a compromise between conservative and aggressive
approaches.

The proposed threshold-based scan method differs
from the original SMART in its definition of threshold
w used to determine the “give/take” state. Still, when
wi − w = 0, grid i is in the “neutral” state. When
wi−w > 0, it is overloaded and in the “give” state; and
when wi − w < 0, it is underloaded and in the “take”
state.w can be one of three possible choices:wl, wg, and
wm. Again,vi = iw is the the prefix sum in the balanced
state under the given thresholdw, andvi

′ = (n−i+1)w
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is that of the negative direction.w should be rounded to
an integer.

In the original SMART, the threshold is based on
the local average,wl, when “give” and “take” states
are balanced in a row (or column). With a changing
threshold, such a balance is no longer held. That is,
there could be more “give” than “take” grids and vice
versa. Therefore,w→i for load in the positive direction
(or simply give-right) and←wi for load in the negative
direction (give-left) are changed as follows: a grid is in
“give” state if its value is over the given thresholdw.
The amount of excessive load to be transferred to its
right (or left) depends on the amount of underload to its
right (or left) provided that amount does not cause the
underload of the current node. More formally, we have

w→i = min{wi − w, max{v′i+1 − v′i+1, 0}} (6)
←wi = min{(wi − w)− w→i ,

max{(vi−1 − vi−1), 0}} (7)

The following steps are used in the proposed
threshold-based scan:

1) If w 6= wl, determine global balanced valuewg.
2) Perform a row scan followed by a column scan

using the selectedw.
3) If w 6= wl, repeat step (2) usingw = wl.
wg in step (1) can be calculated during step (2).

Basically,wg is determined after row and then column
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Fig. 7. A 4×4 sample network, total cost348 with SMART(m, 3).

scans. However, in these scans there are no actual sensor
movements. Movements occur oncew is derived from
wg. Step (3) is needed since the result of step (2) cannot
guarantee a globally balanced state. Whenw = wm, one
variation of the algorithm is to repeat step (2) a constant
(c) number of times before applying step (3).

To simplify the notion, we use SMART(g),
SMART(l), and SMART(m, c) to represent the
threshold-based scan that uses global average, local
average (the original SMART), and mean of global
and local average, respectively.c in SMART(m, c)
corresponds to the number of iterations of step (2).
When c is 1, SMART(m, c) is simply written as
SMART(m).

Since the Hungarian method is a global method, it can
be done in one round. As mentioned above, SMART(l)
can be done in two rounds, which means one row scan
and one column scan. SMART(g) needs 4 rounds. One
row scan, one column scan, and two rounds in step
(3), which can be viewed as applying SMART(l) here.
SMART(m, c) needs2c+2 rounds. We will provide the
proper c value in the simulation, which is quite small.
Note that the traditional diffusion method requires a large
number of iterations to converge.

Figures 5, 6, and 7 are working procedures of
SMART(l), SMART(g), and SMART(m, 3) applied on a
sample4×4 mesh. In Figure 5, the result after row scan
is shown in (b), and column scan, in (c), the network is
balanced with the total moving distance 384. In Figure 6,
(b) and (c) are row and column scans using the global
average. Then SMART(l) is applied in (d) and (e) as
described in step (3). The resultant total moving distance
is 352. Figure 7 is of SMART(m, 3). (b) is the result of
first round which contains a row and a column scan.
(c) is second round, and (d) is the third round. Then
SMART(l) is applied to achieve the balanced state. The
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Fig. 8. A sample 4-level hierarchical partition.

total moving distance is 348. The total moving distance
for this example using the Hungarian method is 350.

B. Hierarchical-based scan methods

In hierarchical-based scan methods, the 2-D mesh is
partitioned into four submeshes in a recursive way. The
row and then column scans are applied to each submesh
in a bottom-up fashion.

Suppose the 2-D mesh is a2k × 2k mesh (called a
level-k mesh) and is partitioned into four2k−1 × 2k−1

submeshes. Each submesh is then recursively partitioned
until the original 2-D mesh is partitioned into22d 2k−d×
2k−d submeshes and2k−d is sufficiently small. Figure 8
shows such a 4-level hierarchical partition.

The following steps are used in the proposed
threshold-based scan:

1) If w 6= wl, determine global balanced valuewg.
2) For i = 0 to d, perform a row scan followed by

a column scan using the selectedw on 2k−d−i ×
2k−d−i submeshes.

3) If w 6= wl, usew = wl to perform a row scan
followed by a column scan on the2k × 2k mesh.

This hierarchical approach is another heuristic ap-
proach where the excessive load in a “give” state is
more likely to be moved to a nearby “take” state than
to other “take” state. In this way, cases like Example 2
will be reduced. A simple analysis is given in Appendix.
H-SMART needsd+2 iterations for a2k× 2k mesh. In
the firstd + 1 iterations, the selectedw can bewg, wl,
or wm, and 2 rounds are needed for each iteration. In
the last iteration, one row scan and one column scan (2
rounds) are executed to ensure a globally balanced state.
Therefore, H-SMART needs2(d+1)+2 rounds totally.

Figure 9 shows a sample4 × 4 mesh. (b) shows the
first step of SMART(g). We can see that the first row
is balanced with grid(1, 1) contributes 9 nodes to grid
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Fig. 9. An example. (a) is initial network, (b) is first step of
SMART(g), (c) is first step of H-SMART(g).

(1, 2) and grid (1, 4) each. (c) is the first step of H-
SMART, where grid(1, 1) contributes to grid(1, 2) and
grid (2, 1). Grid (1, 4) will be covered by grid(2, 4) later.
The total moving distance for this example are144 and
72, for SMART(g) and H-SMART, respectively.

V. SIMULATION

In this section, we present the results of our simula-
tion of the proposed optimal movement-assisted sensor
deployment method, and various heuristic local methods.

A. Simulation environment

All approaches are tested on a custom simulator. We
set up the simulation in a5, 000 × 5, 000 monitoring
area, which is the target field. Sensors can be deployed
in this area following a given distribution. We use
three kinds of distribution as the initial deployment of
sensors. The first is random distribution where sensors
are randomly deployed in the entire area. The second
is one-cluster distribution, where the sensors follow a
normal distribution to form one clustered area. The
third is multiple-cluster distribution, where sensors are
deployed to form several clustered areas of different
sizes. Figure 10 shows samples of the initial distribution.
(a) is random distribution, and (b) is multiple-cluster
distribution (4 sensor clusters). The tunable parameters
in our simulation are as follows.

1) The number of gridsn×n. We use 16 as the value
of n, when H-SMART is analyzed, and10 in the
rest simulation.

2) The number of sensorsm. We varym’s value from
100 to 1000. Whenn is 16, m varies from256 to
1280 with the step256.

3) The normal distribution parameterσ in one-cluster
distribution.σ is the standard deviation of the nor-
mal distribution for the initial deployment, which
can control the density degree of the sensor clus-
tering. We use 1 to 10 as its values. Whenσ is
10, around50% sensors are in50% region of the
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(a) Random distribution
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(b) Multiple-cluster distribution (p = 4)

Fig. 10. Samples of different initial sensor distribution (m = 500).

area. Whenσ is 1, around98% sensors are in10%
region of the area.

4) The number of sensor clusters in multiple-cluster
distribution p. We varyp from 1 to 10. For each
sensor cluster, the normal distribution parameter is
randomly selected from 1 to 10.

5) The number of iterations in H-SMART algorithm
c. We use simulation to find a proper value forc.

The performance metrics are (a) deployment quality
and (b) cost. Deployment quality is shown by the balance
degree measured by the standard deviation of sensor
numbers in all the grids. Deployment cost is measured
by the energy consumption, in terms of overall moving
distance and also, to a less extent, the number of total
moves. The moving distance of sensors is proportional to
the energy consumption and so is the number of moves.
This is because sometimes, the startup of sensors may
cause some additional cost. Since the number of rounds,
which represents the convergence rate of the algorithms,
are static except SMART(m, c), we only test the round
number of SMART(m, c), and find the properc for it.

B. Simulation results

Figure 11 shows the resultant performance of
SMART(m, c) with different c in both random and
multiple-cluster distributions. We can see that in both
distributions, the total moving distance decreases with
the growth ofc. This is because SMART(m) balances
the distribution to the median of global average and
local average, and after one iteration, the local average
changes and the new median is generated for further
balancing. Thus, more iterations lead to more balanced
state and when SMART(l) is applied, as in step (3),

to achieve final balanced state, the moving distance is
smaller. We can also see that, the performance does not
change much after three iterations. Therefore, we use 3
as the value ofc in the following simulation.

Figure 12 illustrates the performance of the optimal
solution (OPT), based on the Hungarian method, and
its extensions, the distributed solutions in random dis-
tribution. The distributed solutions include SMART(l),
SMART(g), and SMART(m). To check the effect of step
(3), we simulate the SMART(g

′
), which is SMART(g)

without step (3). (a) is the resultant standard deviation
comparison of them, which represents the balance de-
gree. We can see that SMART(g

′
) has a very large

standard deviation while SMART(l), SMART(g) and
SMART(m) have relatively smaller ones. The standard
deviation of OPT is 0 (not shown in the figure). (b) is the
comparison of SMART(l), SMART(g), and SMART(m).
We can see that these three have comparative perfor-
mance. Since SMART(l) is applied to both algorithms,
the desired final balance degree is guaranteed, we do
not examine the performance of balance degree. Fig-
ures 12 (c) and (d) show the moving distance and
number of moves in random distribution, respectively.
We can see that SMART(m) has the most moving
distance, while SMART(g) has smaller moving distance
than SMART(l). OPT has the smallest moving distance.
Although SMART(g

′
) has a comparative moving dis-

tance with OPT, it will not be considered further since
it cannot balance the distribution. SMART(m) has the
most number of moves. SMART(g) has the second
largest number of moves. SMART(l) has an even smaller
number of moves than OPT. Because SMART(l) can not
completely balance the distribution while OPT can.
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Fig. 11. SMART(m, c) with difference iteration numberc (n = 10, m = 500).
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Fig. 12. Random distribution (n = 10).

Figure 13 shows the performance in multiple-cluster
distribution. (a) is the moving distance, and (b) is the
number of moves. We can see that with the growth
of the number of clusters, the total moving distance
decreases and the number of moves decreases slightly.
This is because the distribution tends to be balanced with
more sensor clusters. SMART(g) and SMART(m) have
smaller moving distance than SMART(l). SMART(m)
has the smallest among the three. The numbers of moves
show the opposite. SMART(m) has the largest while

SMART(l) the smallest. OPT has the best performance
in both moving distance and number of moves.

Figure 14 shows the performance in one-cluster distri-
bution, where the normal distribution parameterσ varies
from 1 to 10 to represent different sensor clustering
degree. (a) is moving distance, and (b) is the number
of moves. With the growth ofσ, the moving distance
decreases and the number of moves decreases slightly,
as in Figure 13. This is because, whenσ is large, the
distribution is close to random distribution. The relative
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Fig. 13. Multiple-cluster normal distribution (n = 10, m = 500).
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Fig. 14. One-cluster normal distribution (n = 10, m = 500).

performance of SMART(l), SMART(g), and SMART(m)
in the term of moving distance and number of moves
are similar with that of Figure 13. However, in one-
cluster distribution, the moving distance of SMART(g)
and SMART(m) is as small as that of OPT.

Figure 15 is the performance comparison of H-
SMART with other algorithms. We use 16 as the value of
n, thus H-SMART takes 4 levels. The number of nodes
in random distribution varies from 256 to 1280, with
the step 256. Both the moving distance and the number
of moves of all the algorithms are larger than those
whenn is 10, because more grids makes the final distri-
bution more balanced which needs more consumption.
In H-SMART, SMART(g) is used as the fundamental
operation, because it has the best overall performance
except OPT. (a) and (b) show the moving distance and
the number of moves in random distribution. We can
see that H-SMART further reduces the moving distance
of SMART(m), and its number of moves is between
those of SMART(g) and SMART(l). (c) and (d) are
results of multiple-cluster distribution. H-SMART has
better performance than SMART(m) in both the moving

distance and the number of moves. (e) and (f) are results
from one-cluster distribution. These results consist with
those in Figure 14, and H-SMART further increases the
performance of SMART(m) in both the moving distance
and the number of moves.

Simulation results can be summarized as follows:

1) The optimal solution, which uses the Hungarian
method, has the best performance in both the mov-
ing distance, the number of moves, and the balance
degree in almost all kinds of initial distribution.

2) In one-cluster distribution, SMART(g) and
SMART(m) have close moving distance to OPT,
which is much smaller than that of SMART(l).

3) In multiple-cluster distribution, SMART(g) and
SMART(m) have smaller moving distance than
SMART(l), but still much larger than that of OPT.

4) In random distribution, SMART(g) has better
moving distance than that of SMART(l), but
SMART(m) has the largest moving distance.

5) In all distributions, SMART(g) and SMART(m)
have larger numbers of moves than that of
SMART(l). This is because they employ a step-
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Fig. 15. Comparison of H-SMART with other algorithms (n = 16, m = 512 except (a) and (b)).

by-step movement to avoid excessive movement.
6) The iteration number of SMART(m) is as small as

3 to achieve a stable performance.
7) H-SMART further reduces the moving distance of

SMART(m) without improving of the number of
moves in most distributions.

VI. CONCLUSIONS

We present in this paper an optimal solution to the
movement-assisted sensor deployment problem. This so-
lution is implemented using global network information.
We also consider several heuristics without global in-
formation. One is based on extending SMART, a scan-

based approach, and the other one is a hierarchical-
based method. The simulation results show that the
optimal solution achieves best performance in all kinds
of initial distributions. Among the local solutions, the
hierarchical-based algorithm has the best performance,
and the extended SMART algorithms have better per-
formance than the original SMART in total moving
distance, especially in one-cluster distribution, where its
total moving distance is as low as that of the optimal
solution. In our future work, we will develop other
movement-assisted sensor deployment methods, which
are local and can achieve a performance close to the
optimal one.
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APPENDIX

In H-SMART, we say a submesh covers a “give” grid
and a “take” grid if both grids are within the submesh.
We show that this smallest submesh in H-SMART is
related to the Manhattan distance between these two
grids.

Let M [i, j] andM [i
′
, j

′
] be a pair of “give” and “take”

grids. ∆ is defined as∆x + ∆y = |i − i
′ | + |j − j

′ |.
Consider the smallest submesh covering a∆×∆ square.
To simplify the discussion, we assume∆ = 2k. By
placing the square to every positive position of the
mesh, it is easy to see that the probability of the
smallest coverage submesh being a level-k submesh is
1/2, a level-(k − 1) submesh is 1/4, and so on. In
fact, we can consider a projection of∆ × ∆ square
on x-axis (or y-axis). The problem becomes placing a
line (of the projection) to every position at leaves of
a full binary tree shown in Figure 16. In this figure,
each node in tree corresponds to a square of Figure 8.
Each child node is a submesh of the submesh that
corresponds to its parent. Therefore, the expected size
of the smallest coverage submesh is2k+1× 2k+1. Since
∆/2 ≤ max{∆x,∆y} ≤ ∆, the expected size of the
smallest submesh that covers the “give” and “take” grids
is between2k × 2k and 2k+1 × 2k+1. When ∆ 6= 2k,
suppose2k < max{∆x,∆y} < 2k+1, the expected value
for coverage∆x×∆y rectangle is bounded between the
ones for square2k × 2k and square2k+1 × 2k+1.


