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Abstract— In this paper, we address the Topology Control with
Hitch-hiking (TCH) problem. Hitch-hiking [1] is a novel model
introduced recently that allows combining partial messages to
decode a complete message. By effective use of partial signals, a
specific topology can be obtained with less transmission power.
The objective of the TCH problem is to obtain a strongly-
connected topology with minimum total energy consumption.
We prove the TCH problem to be NP-complete and design a
distributed and localized algorithm (DTCH) that can be applied
on top of any symmetric, strongly-connected topology to reduce
total power consumption. We analyze the performance of our
approach through simulation.

Keywords: Ad hoc wireless networks, energy efficiency, Hitch-
hiking model, topology control.

I. I NTRODUCTION

Ad hoc wireless networks consist of wireless nodes that
can communicate with each other in the absence of a fixed
infrastructure. Wireless nodes are battery powered and there-
fore have a limited operational time. Recently, the optimization
of energy utilization of wireless node has received significant
attention [8]. Different techniques for power management have
been proposed at all layers of the network protocol stack.
Power saving techniques can generally be classified into two
categories: scheduling the wireless nodes to alternate between
the active and sleep mode, and adjusting the transmission
range of wireless nodes. In this paper, we deal with the second
method.

To support peer-to-peer communication in ad hoc wireless
networks, the network connectivity must be maintained at all
times. This requires that there exists for each node a route
to reach any other node in the network. Such a network
is called strongly-connected. In this paper, we address the
problem of assigning a power level to every node such that the
resultant topology is strongly-connected, and the total energy
expenditure for achieving the strong connectivity is minimized.

In order to reduce the energy consumption, we take ad-
vantage of a physical layer design that allows combining
partial signals containing the same information to obtain the
complete data. This model is called Hitch-hiking and has
been introduced recently in [1]. By an effective use of the
partial signals, a specific topology can be maintained with less
transmission power.
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Fig. 1. Three nodes Hitch-hiking example. (a) Initial power consumption
based on MST. (b) Power consumption withA as source. (c)B is the source.
(d) C is the source.

Figure 1 is a simple example to show the concepts of Hitch-
hiking and strong connectivity in a Hitch-hiking model. We
assume the power to communicate between two nodes to be
the square of the distance between them. The number on
each edge represents the coverage provided by that edge to
the destination node. In Figure 1 (a), a minimum spanning
tree (MST) is formed among the three nodes, where each
undirectional link corresponds to two unidirectional links (also
symmetric links). Each node sets its power to reach its furthest
neighbor on the MST. For example, nodeB must set its
power to42 + 62 = 52 to reach nodeC. Nodes are strongly-
connected if with any one of them as the source node, all
the others can get its message directly or by forwarding.
In a model with Hitch-hiking, as in Figures 1 (b), (c) and
(d), communication power can be reduced to partially cover
some neighbors as long as several partial messages can be
combined for a successful message receipt at those nodes.



In this model, only the nodes that have received a complete
message can forward it. For example, in (b), nodeA has a
power of 18 to fully cover B (18 = 32 + 32) and to 31%
cover C (31% = 18/(72 + 32)). Since B has received the
complete message, it can forward the message toC, providing
69% coverage with power level set to52×6% = 35.86. Thus
C gets the complete message. Using the same idea, the other
two nodes can be fully covered if we select nodeB or C
as the source node as in (c) and (d). Therefore, the graph is
strongly-connected with Hitch-hiking.

Our contributions in this paper are to:
1) define the Topology Control with Hitch-hiking (TCH)

problem,
2) prove that TCH is NP-complete and show an upper

bound of the performance ratio between the optimal
solutions of the TCH problem and the topology problem
without Hitch-hiking,

3) design a distributed and localized algorithm that can be
applied to any strongly-connected topology to reduce the
overall power consumption and study its performances
through simulations, and

4) prove that an MST-based topology is an approximation
algorithm with ratio bound2/k for the TCH problem,
wherek is a constant defined in section III.

The rest of this paper is organized as follows. In section II,
we overview topology control protocols. Section III describes
the Hitch-hiking model and the corresponding network model.
Also, we present the Topology Control with Hitch-hiking
(TCH) problem, prove its NP-completeness, and show the
performance ratio between TCH and topology control without
Hitch-hiking. We propose a distributed and localized algorithm
in section IV. Section V presents the simulation results for the
DTCH algorithm, and section VI concludes this paper.

II. RELATED WORK

Topology control has been addressed previously in liter-
ature in various settings. In general, the energy metric to
be optimized (minimized) is the total energy consumption
or the maximum energy consumption per node. Sometimes
the topology control is combined with other objectives, such
as to increase the throughput or to meet some specific QoS
requirements. The strongly-connected topology problem with
a minimum total energy consumption was first defined and
proved to be NP-complete in [2], where an approximation
algorithm with performance ratio of 2 is given. In general,
topology control protocols can be classified as: (1) centralized
and global vs. distributed and localized; and (2) determin-
istic vs. probabilistic. The localized algorithm is a special
distributed algorithm, where the state of a particular node
depends only on states of local neighborhood. That is, such an
algorithm has no sequential propagation of state information.

Most protocols are deterministic. The work in [16] is
concerned with the problem of adjusting the node transmis-
sion powers such that the resultant topology is connected or
biconnected, while minimizing the maximum power usage
per node. Two optimal, centralized algorithms, CONNECT

and BICONN-AUGMENT, have been proposed for static
networks. They are greedy algorithms, similar to Kruskal’s
minimum cost spanning tree algorithm. For ad hoc wireless
networks, two distributed heuristics have been proposed, LINT
and LILT. However, they do not guarantee the network con-
nectivity.

Among distributed and localized protocols, Li et al [10]
propose a cone-based algorithm for topology control. The
goal is to minimize total energy consumption while preserving
connectivity. Each node will transmit with the minimum power
needed to reach some node in every cone with degreeα.
They show that a cone of degreeα = 5π/6 will suffice to
achieve connectivity. Several optimized solutions of the basic
algorithm are also discussed as well as a beaconing based
protocol for topology maintenance.

Li, Hou and Sha [11] devise another distributed and lo-
calized algorithm (LMST) for topology control starting from
a minimum spanning tree. Each node builds its local MST
independently based on location information of its 1-hop
neighbors and only keeps 1-hop nodes within its local MST
as neighbors in the final topology. The algorithm produces
a connected topology with maximum node degree of 6. An
optional phase is provided where the topology is transformed
to one with bidirectionl links. An extension is given in [12],
where the given network contains unidirectional links.

Among probabilistic protocols, the work by Santi, Blough
and Vainstein [17] assumes all nodes operate with the same
transmission range. The goal is to determine a uniform mini-
mum transmission range in order to achieve connectivity. They
use a probabilistic approach to characterize a transmission
range with lower and upper bounds of the probability of
connectivity.

Some variants of the topology control problem have been
proposed which include optimizing other objectives as well.
Hou and Li in [5] present an analytic model to study the rela-
tionship between the throughput and adjustable transmission
range. The work in [6] puts forward a distributed and localized
algorithm to achieve a reliable high throughput topology by
adjusting node transmission power. The issue of minimizing
the energy consumption has not been addressed in these two
papers. Jia, Li and Du [7] are concerned with determining a
network topology that can meet the QoS requirements in terms
of end-to-end delay and bandwidth. The optimization criterion
is to minimize the maximum power consumption per node.
When the traffic is splittable, an optimal solution is proposed
using linear programming.

Our work differs from these approaches by using Hitch-
hiking [1]. This model allows combining partial signals con-
taining the same information in order to decode the complete
message. We explore this feature in minimizing total power
consumption while achieving a strongly-connected topology
with Hitch-hiking.

III. M ODEL AND PROBLEM DEFINITION

In this section, we introduce the Hitch-hiking model and the
corresponding network model. Then, we define the Topology



Control with Hitch-hiking (TCH) problem, prove its hardness
and present a performance ratio between TCH and topology
control without Hitch-hiking.

A. Hitch-hiking Model

Hitch-hiking [1] takes advantage of the physical layer design
that combines partial signals containing the same information
to obtain complete information. By effectively using partial
signals, a packet can be delivered with less transmission power.
The concept of combining partial signals using maximal ratio
combiner [14] has been traditionally used in physical layer
design of wireless systems to increase reliability. The Hitch-
hiking model introduces two parameters related with SNR
(signal to noise ratio):γp which is the threshold needs for
successfully decoding the packet payload andγacq which is
the threshold required for a successful time acquisition. The
system is characterized byγacq < γp. We note withk the ratio
of these two thresholds,k = γacq/γp. A packet received with
a SNRγ is:

• fully received, ifγp ≤ γ
• partially received, ifγacq ≤ γ < γp

• unsuccessfully received, ifγ < γacq

Consider that a wireless nodei transmits a packet, the
coverage of a nodej that receives the packet with a SNR
per symbolγ is defined as:

cij =





1 for β > 1
β for k < β ≤ 1
0 for 0 < β ≤ k

where β = γ/γp. A channel gain is often modelled as a
power of the distance, resulting inβ = rα/dα

ij = (r/dij)α,
whereα is a communication medium dependent parameter,r
is the communication range of nodei, anddij is the Euclidian
distance between two communicating nodes. For example,
considerk = 0.125 andα = 2. For a nodej with r/dij = 1/2,
the coverage is0.25, whereas for the caser/dij = 1/3 the
coverage is0. The basic idea in the Hitch-hiking model is
that if the same packet is partially receivedn times from
different neighbors withγacq ≤ γi < γp for i = 1..n such that∑n

i=1 γi ≥ γp then the packet can be combined by a maximal
ratio combiner [14] and can be successfully decoded.

B. Network Model

We consider an ad hoc wireless network withn nodes
equipped with omnidirectional antennas. The nodes in the
network are capable of receiving and combining partial re-
ceived packets in accordance with the Hitch-hiking model.
We represent the network by a directed graphG = (V,E),
where the vertices setV is the set of nodes corresponding
to the wireless devices in the network and the set of edges
E corresponds to the communication links between devices.
A symmetric, strongly-connected graph is a special type of
directed graph, where a linkij exists if and only if link
ji exists. That is, connections between two nodesi and j
are symmetric, although they may have different transmission
power levels.

Between any two nodesi and j there will be a linkij if
the transmission from nodei is received by the nodej with
a SNR greater thanγacq. Every nodei ∈ V has an associated
transmission power levelpi = rα. Associated with each link
ij ∈ E is the coverage provided by nodei to nodej, defined
as follows:

cij =

{
1 for pi/dα

ij ≥ 1
pi/dα

ij for k ≤ pi/dα
ij < 1

The casepi/dα
ij < k is not included since an edge will exist

only when the SNR of the received signal is at leastγacq, that
is pi/dα

ij ≥ k. In this paper we consider the cases whenα
equals 2 and 4, andγp = 1.

C. Topology Control with Hitch-hiking (TCH)

In this section, we address the topology control problem
using the Hitch-hiking model. The fully received packet is
defined as follows: considering a transmission from a node
i to a nodej, node j is partially or fully covered byi if
1 > cij ≥ γacq and cij = 1, respectively. If, upon combining
packets received from one or more neighbors, say,k neighbors,
results in a full coverage of nodej, i.e. Σkpk/dα

kj ≥ 1, then
the packet is fully received.

We then definestrong connectivityunder the Hitch-hiking
model. Basically, for any nodes sending a packet, there
should be a “path” to every other node, that is, the packet
should be fully received by all other nodes in the network
eventually. The following rules apply: (1)s has the full packet,
and (2) only nodes that fully received the packet are able to
forward it, includings. Each node that has fully received the
packet will forward it only once. Now we can formally define
the Topology Control with Hitch-hiking (TCH) problem as
follows:

TCH Definition. Given an ad hoc wireless network withn
nodes and using the Hitch-hiking model, assign a power level
to every node such that:

1) the sum of the power levels in all nodes is minimized∑n
i=1 pi = MIN , and

2) the resultant Hitch-hiking based topology is strongly-
connected.

Figure 1 shows the concept of strong connectivity under the
Hitch-hiking model, whereγacq = 0.2. Figure 1 (a) shows the
power level assigned to each node. Figures 1 (b), (c) and (d)
respectively show that starting from each node, all other nodes
are fully covered.

D. NP-Completeness of the TCH Problem

In [9], Kirousis et al give a formal proof of NP-completeness
of general graph version of the topology control problem
(GTC), without Hitch-hiking. In order to prove that TCH is
NP-complete, we will show that TCH belongs to the NP-class
and GTC is a special case of TCH.

Theorem 1: The TCH problem is NP-complete.

Proof: It is easy to see TCH belongs to the NP-class. Having
assigned a transmission power for each node in the network,
it can be verified in polynomial time whether the resultant



topology is strongly-connected with Hitch-hiking and whether
the cost of this assignment (sum of the powers of each node)
is less than a fixed value.

Next, we show that GTC is a special case of TCH. Recall
our previous description ofγacq andγp in the subsection III-
A. Whenγacq = γp, we will have no case of partial reception
of signals. Thus the TCH problem will be reduced to the GTC
problem, where a signal is either fully received or the reception
fails. Hence, we say that the GTC problem is a special case
of the TCH problem, forγacq = γp.

Because GTC is NP-complete and is a particular case of the
TCH problem, and TCH belongs to NP-class, we conclude that
TCH is an NP-complete problem. 2

E. Performance Ratio Between GTC and TCH Problems

In this section, we prove that the optimal solution of the
GTC problem has a performance ratio of1/k with the optimal
solution of the TCH problem, wherek was defined in section
III-A.

Theorem 2: The performance ratio between the optimal
solution of the GTC problem and the optimal solution of the
TCH problem is upper bounded by1/k.

Proof: Let us note the optimal solution of the GTC problem
with OPTGTC and the optimal solution of the TCH problem
with OPTTCH . It is clear thatOPTTCH ≤ OPTGTC since
the solution set of the TCH problem includes that of the GTC
problem. Next, we show thatOPTGTC ≤ 1

k ·OPTTCH .
Let us assume there aren nodes in the network, noted with

1, 2, ..., n. Let us note node transmission ranges associated
with OPTTCH with r1, r2, ..., rn. Then OPTTCH = rα

1 +
rα
2 + ... + rα

n . For a nodei, we note withNTCH
i the set of

nodes partially or totally covered byi. Then ∀j ∈ NTCH
i ,

( ri

dij
)α ≥ k (see section III-A), wheredij is the distance

between nodesi andj. Let us consider now the case when each
transmission range is increased byk−

1
α . This corresponds to

a solutionSOL with node transmission rangesr′1, r
′
2, ..., r

′
n:

SOL =
1
k
·OPTTCH

= (r1 · k− 1
α )α + ... + (rn · k− 1

α )α

= r
′α
1 + r

′α
2 + ... + r

′α
n (1)

For any nodei = 1..n and for any nodej ∈ NTCH
i , we have

( r′i
dij

)α = ( ri·k−
1
α

dij
)α = 1

k · ( ri

dij
)α ≥ 1. Therefore, all nodes

that were previously partially covered in the TCH solution are
now fully covered and the strong connectivity is preserved.
Therefore, SOL is also a solution of the GTC problem, with
OPTGTC ≤ SOL. This results inOPTGTC ≤ 1

k ·OPTTCH .
To summarize, we have proved thatOPTTCH ≤

OPTGTC ≤ 1
k ·OPTTCH , therefore,OPT GT C

OPT T CH ≤ 1/k. 2

IV. D ISTRIBUTED TOPOLOGYCONTROL WITH

HITCH-HIKING (DTCH) ALGORITHM

In this section, we propose a distributed topology control
with Hitch-hiking (DTCH) algorithm that can be applied to

TABLE I

DTCH NOTATIONS.

G Symmetric, strongly-connected starting topology
fi 1 if node i decided its final power, otherwise 0
pi Transmission power level of nodei
N(i) Set of 1-hop neighbors of nodei in G
P (i) Set of transmission power levels of nodei
gi(p) Gain of nodei at power levelp
dij Distance between nodesi andj

any symmetric, strongly-connected topology to reduce the total
power consumption. Any node decides its final power based
only on local information from its 2-hop neighborhood. To
be distributed and localized are important characteristics of
an algorithm in ad hoc wireless networks, since it will be
able to easily adapt the algorithm to a dynamic and scalable
architecture. In describing the algorithm, we use the notations
in Table I.

A. Basic Ideas

In DTCH, each node independently “locks” its 1-hop neigh-
borhood to perform power adjustment to save energy. We take
node i as the current node for example (see Figure 2). All
the nodes on the inner dashed circle includingj are i’s 1-
hop neighbors; the nodes on the outer dashed circle, such as
k and l, are i’s 2-hop neighbors. The main idea of DTCH
is to increasei’s power level to “contribute” the coverage
of its 2-hop neighbors so the range ofi’s 1-hop neighbors
can be reduced, and the overall power consumption can also
be reduced. To ensure connectivity, 1-hop neighbors, sayj,
should still be able to reachi directly. Such a process is the2-
hop power reduction process. Each node performs this process
once and gets its final power level. In fact, in the 2-hop power
reduction process,i and its 1-hop neighbors are involved in
an “atomic action”. To implement such an atomic action, two
approaches can be used:

1) Back-off scheme. After nodei has selected a new power
level, it backs off a period of time inversely proportional
to its calculated gain. This will give priority to the nodes
with higher gain to set up their final power first. If
node i receives an update during this interval, then it
recomputes its power level and backs-off again. If the
timer expires without any updates, then nodei considers
this power level as its final power, and announces this
power level together with its neighbors’ new power
levels to their corresponding 1-hop neighborhood. The 1-
hop neighbors ofi may have new power levels duringi’s
2-hop power reduction process, but will not finalize their
power levels until themselves perform this reduction
process.

2) Locking scheme. Nodei needs to secure locks of all its
neighbors (in addition to its own lock). Oncei completes
its power reduction process, it announces the final power
level of itself and new power levels of its neighbors to
their corresponding 1-hop neighborhood, and releases its
lock and the locks of its neighbors. Unlike the back-off
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Fig. 2. Illustration of 2-hop neighbor set ofi.

scheme that may exhibit occasional mis-coordination,
the locking scheme guarantees that nodes execute the 2-
hop power reduction process without conflict. However,
the locking scheme is more expensive to implement.

B. Detailed Algorithm

The TCH algorithm starts from a symmetric, strongly-
connected topologyG, assumed to be the output of a tra-
ditional topology control algorithm. Two such algorithms,
DMST and LMST, are addressed later in this section.

We assume that each nodei has all the distance information
within its 2-hop neighborhood. Note that this kind of informa-
tion is usually available after the traditional topology control
algorithm completes. Each node also maintainspj values for
all the neighbors. Wheneverpj for a nodej changes, nodej
broadcasts this change to its neighbors.

The goal of the DTCH algorithm is, by starting from an
initial powerp0

i needed to reach its furthest 1-hop neighbor for
each nodei, to decide the final power assignment by using the
Hitch-hiking advantage such that the total power is minimized.
Next, we describe the mechanism used by each node in order
to decide its final power level.

The gain of nodei is computed inComputeGain(i). The
gain gi(p) is defined as the decrease in the total power,
obtained by increasing nodei’s transmission power level to
p, in exchange for a decrease of the power levels of some
other nodes. This is because when the power level of nodei
is increased,i provides partial or full coverage to more nodes
in the network. For example, ifk is a 1-hop neighbor of node
j, where j ∈ N(i) (see Figure 2), then an increase in the
partial or full coverage of nodek may facilitate reduction of
the power level of nodej that can provide less coverage to
nodek.

Each nodei maintains a variablefi which is initially set to
0, meaning that this node has not yet decided its final power
level. In order to decide its final power, nodei computes the
gain for various power levels and selects the power level for
which the gain is maximum. The power levels inP (i) are
those power levels for which nodei could reduce the power
level of any of its neighborj to dα

ij , by providing the additional
coverage needed to a full coverage of the neighbors ofj. This
can be done in procedureComputeP (i).

The process of computing the gain is performed for each
power levelp ∈ P (i). Once the gain for all power levels in
P (i) is determined, the node selects the power that produces

a maximum gain, noted withpnew
i . If there is no power level

p such thatgi(p) > 0, thenpi will not change.
When node i announces its new power level through

Broadcast(), all its neighborsj, with fj 6= 1 will invoke
Reduce() to decrease their power levels and broadcast the
change, as a result of the additional coverage provided by
nodei.

Algorithm DTCH( i)
1. pi ← p0

i

2. fi ← 0
3. while fi = 0
4. ComputeP(i)
5. ComputeGain(i)
6. pnew

i ← power level for which gain is maximum
7. Start a timert ← 1

gi(pnew
i )

8. if broadcast message received fromj beforet
expires

9. then pi ← Reduce(j, pj , i)
10. elsepi ← pnew

i

11. fi ← 1
12. Broadcast(i, pi, fi)
End DTCH.

ComputeGain (i)
1. /*Find gain for all power levels inP (i) */
2. for all p ∈ P (i)
3. for all j ∈ N(i)
4. pred

j ← Reduce (i, p, j)
5. gi(p) ← ∑

j∈N(i)(pj − pred
j )− (p− pi)

End ComputeGain.

Reduce(i, p, j)
1. /*Reduce the power of node j on the basis of

partial coverage provided by node i with power p*/
2. if fj = 1 then return pj

3. for all k ∈ N(j)
4. pred

j (k) ← (1− cik)× dα
jk

5. return max{dα
ij ,maxk∈N(j) pred

j (k)}
End Reduce.

C. Properties

Next, we show that the complexity of the DTCH algorithm
run by each nodei is polynomial in the total number of nodes
n. The complexity of theGain(i) procedure takesO(|P (i)|×
|∆|2), where∆ is the maximal node degree. This is because
for each neighborj ∈ N(i), the i’s coverage on each 2-hop
neighbork ∈ N(j) needs to be computed. This process has to
be done for each power level inP (i). When|P (i)| = O(∆), it
is O(∆3). Therefore, the complexity of the algorithm DTCH
run on each node isO(∆4) with another loop.

Theorem 3: The power level assignment provided by the
DTCH algorithm guarantees a strongly-connected topology
with the Hitch-hiking model.

Proof: Initially, each node is assigned the power level needed
to reach the furthest 1-hop neighbor inG. The starting



topology G is strongly-connected, that is, between any two
nodes there exists a path.

First, we note that there are two cases when a node’s power
level may change in the DTCH algorithm: (a) in line 10, but
here the value is increased, so this will not affect connectivity,
and (b) in line 9, when a node’s power level may be reduced.

Let us assume by contradiction that after applying the
DTCH algorithm, the strong connectivity is not preserved.
Then, there exist two nodesi and j such that when the node
i is sending a packet, this packet is not fully received byj.
The nodesi and j are connected inG, and let us note with
i0 = i, i1, ..., im = j a path betweeni and j. We show by
induction thatim fully receives the packet sent byi0.

First, i0 has the full packet. Ifi0 did not change its power or
has increased the power level, theni1 is fully covered byi0 and
therefore receives the full packet fromi0. Let us consider the
case wheni0 has reduced its power level. Then, in conformity
with DTCH, the current power ofi0 was updated when one
of its neighbors, sayk, has set up its final power. In that case,
i0 fully covers k and i0 together withk fully cover all i0’s
neighbors, includingi1. So i1 also fully receives the packet.
Applying the same mechanism, we can show that any node on
the path fully receives the packet sent by its predecessor, even
if it is not fully covered by its predecessor. Thus, nodeim fully
receives the packet, contradicting our initial assumption that
strong connectivity is not maintained after running DTCH.2

D. Two Special Cases

We have applied the DTCH algorithm on two starting
topologies output by two distributed algorithms: DMST (Dis-
tributed MST) and LMST (Localized MST). Again, a localized
algorithm is a special distributed algorithm without sequential
propagation. We note with DMST the Gallegar’s distributed
algorithm [4] for constructing an MST, and with DMST-
based DTCH, the DTCH algorithm starting from a topology
G generated by DMST.

MST has been considered before as a reference point in
designing topology control mechanisms in the general model
(without Hitch-hiking) because of its important properties and
good performances. MST has the minimum longest link among
all the spanning trees [3], therefore, if every node has assigned
a power level needed to reach the furthest neighbor then the
maximum power assigned per node is minimized for the MST
compared with other spanning trees. This property results
in maximizing the time until the first node will deplete its
power resources. Another important property of the MST-
based topology in the general case (without Hitch hiking) is
that it provides an approximation algorithm with performance
ratio of 2 [9].

Next, we prove that an MST-based topology has a perfor-
mance ratio of2/k for the TCH problem. We refer to the
mechanism that builds an MST over alln nodes in the network
and then assigns to any node the power needed to reach the
furthest neighbor in the MST as MST-based topology.

Theorem 4: An MST-based topology is an approximation
algorithm with ratio bound of2/k for the TCH problem,

wherek = γacq/γp is a constantk ∈ (0, 1], and represents a
characteristic of the wireless communication medium.

Proof: Let us note the optimal solution of the GTC problem
with OPTGTC , the optimal solution of the TCH problem with
OPTTCH , and the MST-based solution withMST .

It is proved in [9] that an MST-based topology has a per-
formance ratio of 2 for the GTC problem, thereforeMST ≤
2 · OPTGTC . In Theorem 2, we prove thatOPTGTC ≤
1
k · OPTTCH , therefore, MST ≤ 2

k · OPTTCH . Since
OPTTCH ≤ MST , we obtain thatOPTTCH ≤ MST ≤
2
k ·OPTTCH and the theorem holds. 2

Since DMST-based DTCH starts from an MST-based topol-
ogy and improves it, using the Hitch-hiking advantage, DMST-
based DTCH will also have a performance ratio of2/k for the
TCH problem.

Secondly, we apply the DTCH algorithm to a symmetric
strongly-connected topology1 produced by the LMST algo-
rithm, and refer to this case as LMST-based DTCH. LMST is
a localized algorithm introduced by Li et al [11] as discussed
in Section II. As DTCH is also localized, the resultant LMST-
based DTCH algorithm is localized and distributed. We present
the simulation results for LMST-based DTCH in section V-
B. Note that if DTCH is applied on DMST or LMST, the
complexity isO(1). This is because in LMST and DMST, the
degree of any node in the resultant topology is bounded by
6. Therefore, the number of power level of nodei, |P (i)|, in
DTCH is constant. The complexity of DTCH in the general
case isO(|P (i)| × |N(i)|2), which is O(1) here.

Let us now present an example with a topology consisting of
six nodes, distributed as in Figure 3. The number on each node
indicates the power level used by that node in maintaining the
topology, based on DMST in (a) and LMST in (b). To simplify
the picture, we use undirectional links when the coverage in
both directions is1, which refers to full coverage, whereas
directional links with values less than1 indicate the amount
of partial coverage.

In Figure 3 (a), we present a DMST-based topology, without
Hitch-hiking. The power level assigned to each node is the
power needed to reach the furthest neighbor in DMST. In this
case, we obtain a total cost of186. In Figure 3 (b), we show the
topology obtained after using the LMST algorithm [11], with
a total cost of287. LMST uses a localized way to generate the
MST; every node decides its 1-hop neighbors independently.
Therefore, in a global view, the MST might be a graph.

In Figure 3 (c), we show the topology and power assignment
after running the DMST-based DTCH algorithm. We assume
γacq = 0.01. First, each node computes itsgain. As node
F has the largestgain, it increases its power to34.56, and
thus nodesA and C decrease their power to1 and 34.23,
respectively. In the second round, nodeB sets its power to
4 and nodeE decreases its power to61.94. We obtain a
total cost of160.73, and a13.59% power reduction compared
with the output of the DMST algorithm (in Figure 3 (a)),

1which means all unidirectional links can be removed without impairing
the network connectivity.
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Fig. 3. Example for topology control with and without Hitch-hiking. (a)
DMST and power consumption. (b) LMST and power consumption. (c)
DMST-based DTCH. (d) LMST-based DTCH.

while preserving the strong connectivity. For example, nodeA
reduces its power to1, which partially covers its neighborD
with 0.04, while nodeT provides the additional0.96 coverage.
Thus, a message sent fromA is fully received byF , and then
A andF can together coverD.

Figure 3 (d) illustrates the execution of the LMST-based
DTCH algorithm. We obtain a total cost of206.1 and a
reduction ratio of28.19% compared with the output of the
LMST algorithm (in Figure 3 (b)), while preserving the strong
connectivity.

V. SIMULATION RESULTS

We present the results of our simulation based on the size
of the network. Subsection V-A models the TCH problem as
a minimization constrained problem and presents results of
several “toy” examples for small scale topologies, with up
to 8 nodes. Subsection V-B shows results for larger scale
topologies, when the number of nodes varies between 100 and
1000.

A. Small Scale Network Topologies

In this section, we formulate the TCH problem as a con-
strained minimization problem that is solved and implemented
using the optimization toolbox in Matlab [13]. Then, we
compare the results obtained by running DMST-based DTCH
and DMST with the results obtained using Matlab, for small
scale topologies. Results obtained using Matlab are optimal
solutions, so this experiment will be an indication of how
DMST and DMST-based DTCH perform.

The parameters includes setV of n nodes and their loca-
tions, andpmax the maximum power level that can be assigned
to a node. We also assumeγacq > 0, γacq → 0 and γp = 1.
Assigning a very small value toγacq results in having any
node participating in the coverage of any other node. Letpi

for i = 1..n, pi ∈ < , represent the power level of every
node i. fm

ij for m, i, j = 1..n, are binary variables.fm
ij = 1

if any packet sent from nodem will be fully received by
node i after j steps; otherwise,fm

ij = 0. In order to achieve
strong connectivity with Hitch-hiking we need to have a “path”
from any node to any other node. Therefore, a packet sent by
any node must be fully received by any other node after a
number of steps. The maximum number of steps isn− 1, as
we will argue later. Next, we present TCH as a constrained
minimization problem:

minimize p1 + p2 + ... + pn

subject to (1) Xm, (m = 1..n)
(2) pmax ≥ pi > 0, (pi ∈ <)

whereXm is a set of conditions, defined as follows:

(3) fm
1n = fm

2n = ... = fm
nn = 1

(4) fm
i1 = 0, (i = 1..n, i 6= m)

(5) fm
m1 = 1

(6) fm
i(j−1) ≤ fm

ij ≤ fm
i(j−1) +

∑
k=1..n

k 6=i
fm

k(j−1) · pk

dα
ki

,

(i = 1...n, j = 2...n)
(7) fm

ij = 0 or 1

The problem tries to minimize total power in the network.
Constraint (1) is further expanded in conditions (3) through (7)
and basically requires that from any nodem there should be
a route to any other node in the network. Therefore, a packet
transmitted bym should be fully received by all other nodes
in the network after at mostn−1 steps. For a variablefm

ij , m
represents the source node currently considered,i represents
a destination andj is for the step number. A packet sent by
a nodek is received by nodei with fraction pk/dα

ki.
Let us assume now that a nodem transmits a packet. Then,

for a strongly-connected topology, any other node should be
able to fully receive this packet in at mostn− 1 steps. Also,
only the nodes that fully received a packet are able to forward
the packet. We also assume that partial messages are stored by
the receiver node.fm

ij = 0 means that nodei does not receive
the packet by stepj. fm

ij = 1 means that nodej fully received
the packet at stepj, and from condition (6) this will result in
fm

i(j+1) = ... = fm
in = 1. As we can see in the inequality

(6), and because variablesf are binary, only nodes that fully
received a frame will contribute in other nodes partial frame
receipts.

Condition (3) asks that all nodes fully received the packet
after stepn, by askingfm

in = 1, for any i = 1..n. Conditions
(4) and (5) states that initially (step 1, whenj = 1) only the
source node has the full packet. Another observation is that if
all other nodes will receive the packet, then this will happen
within at mostn − 1 steps. This is because there aren − 1
nodes that have to receive the packet, and at every step at least



Fig. 4. Results for topologies with 3 to 8 nodes.

one more node fully receives the packet, otherwise, there will
exist one or more nodes that will not fully receive this packet.

In the simulations, we consider 8 nodes randomly dis-
tributed into an1 × 1 Km2 area, as illustrated in Figure 4
(a), usingγacq = 0.0001, γp = 1 and α = 2. In Figure 4
(b), we represent the total energy consumed for topologies
between3 and 8 nodes by using the first3 nodes of the8
nodes, then the first4, the first5, and so on. When the number
of nodes is between3 and7, Matlab converges to the optimal
solution, whereas for the 8 node topology we show the result
after 643 iterations. Considering this node distribution, DMST-
based DTCH results are within15% of the optimal solution
and provide an overall reduction in energy consumption of up
to 17.5% compared with the DMST-based solutions.

B. Large Scale Network Topologies

In this section, we evaluate the DMST-based DTCH al-
gorithm and LMST-based DTCH algorithm for large scale
topologies, up to1000 nodes. We set up our simulation in a
100×100 m2 area. Nodes are randomly distributed in the field
initially and will remain stationary once deployed. We use both
DMST and LMST algorithms in the simulation to generate
the starting topologies and to calculate the initial power
assignment. Since the localized algorithm lacks global infor-
mation, the topology obtained when running LMST will be
less efficient than DMST. Therefore, the power consumption
with LMST will be greater than that of DMST theoretically. In
the simulation, we consider the following tunable parameters:

1) The node density. We change the number of deployed
nodes from100 to 1000 to check the effect of node
density on the performance.

2) The index exponentα, which shows the relation between
distance and power consumption.

3) The parameterγacq, which depends on actual wireless
communication. We use0.0001, 0.1 and0.2 as its value
in the simulation.

Figures 5 (a) and (b) show the power consumption de-
pending on the number of nodes, whenα is 2. Figure 5 (a)
illustrates DMST and DMST-based DTCH, and (b) LMST
and LMST-based DTCH. We observe that the overall power
consumption can be greatly reduced by using the DTCH
algorithm. The smaller theγacq, the better the performance.
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Fig. 5. Power consumption of DTCH with DMST and LMST (γacq ∈
{0.0001, 0.1, 0.2}).

Power consumed by DMST is smaller than that consumed by
LMST. The node density does not have much effect on the
power consumption, especially when node number is bigger
than200. This is because when node number becomes larger,
the average distance between nodes is smaller, and so is the
average communication power. Therefore, the overall power
consumption changes slightly.

Figures 5 (c) and (d) show the power consumption depend-
ing on the number of nodes whenα is 4. We can see that
the advantage in power efficiency when using DTCH still
holds. The difference between these two algorithms’ power
consumption is less distinctive.

Figure 6 shows the reduced ratio of the consumption power.
Figure 6 (a) shows DMST-based DTCH forα = 2, and (c)
whenα = 4. Figure 6 (b) represents LMST-based DTCH for
α = 2, and (d) whenα = 4. We observe that LMST-based
DTCH with α being 2 achieves the highest reduction in the
power consumption, which can be up to18.5%, while DMST-
based DTCH withα being4 has the least power reduction.

Simulation results can be summarized as follows:

• Using Hitch-hiking, the proposed DTCH algorithm re-
duces the nodes’ energy consumption in topology control
by 7% to 19%. The LMST-based DTCH has greater
energy reduction than DMST-based DTCH.

• With α = 2, DTCH achieves better performance than
α = 4. The former is around17%, and the latter around
9%.

• The energy reduction ratio is not sensitive to the param-
eterγacq whenγacq is very small; there is no difference
between0 and 0.0001 of γacq ’s value. With increasing
value of γacq, the energy reduction ratio will reduce
slightly.
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Fig. 6. Reduced ratio of DTCH with DMST and LMST (γacq ∈
{0.0001, 0.1, 0.2}).

VI. CONCLUSIONS

In this paper, we have addressed the Topology Control with
Hitch-hiking (TCH) problem in an ad hoc wireless network
with an objective of minimizing the total energy consumption
while obtaining a strongly-connected topology. Power control
impacts energy usage in wireless communication with effect
on battery lifetime, which is a limited resource in many wire-
less applications. We have proved that TCH is NP-complete
and proposed a distributed and localized algorithm that can
be applied to any symmetric, strongly-connected topology in
order to reduce the total power consumption. Our algorithm
uses a distribution decision process at each node that makes
use of only 2-hop neighbor information. We have analyzed
the performance of our algorithm through simulations. Our
future work are, to do some further analysis on other effect
of DTCH, such as delay and throughput; by starting from
DTCH algorithm, to design an efficient topology maintenance
mechanism that effectively adapts to a dynamic and mobile
wireless environment.
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