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Abstract—This paper addresses fault-tolerant topology control in a heterogeneous wireless sensor network consisting of several
resource-rich supernodes, used for data relaying, and a large number of energy-constrained wireless sensor nodes. We introduce the
k-degree Anycast Topology Control ðk-ATCÞ problem, with the objective of selecting each sensor’s transmission range such that each
sensor is k-vertex supernode connected and the total power consumed by sensors is minimized. Such topologies are needed for
applications that support sensor data reporting, even in the event of failures of up to k# 1 sensor nodes. We propose three solutions
for the k-ATC problem: a k-approximation algorithm, a greedy centralized algorithm that minimizes the maximum transmission range
between all sensors, and a distributed and localized algorithm that incrementally adjusts sensors’ transmission range such that the
k-vertex supernode connectivity requirement is met. Extended simulation results are presented to verify our approaches.

Index Terms—Energy efficiency, fault tolerance, heterogeneous wireless sensor networks, topology control.

Ç

1 INTRODUCTION

IN this paper, we address topology control in hetero-
geneous wireless sensor networks (WSNs) consisting of

two types of wireless devices: resource-constrained wireless
sensor nodes deployed randomly in a large number and a
much smaller number of resource-rich supernodes placed at
known locations. The supernodes have two transceivers:
one connects to the WSN, and the other connects to the
supernode network. The supernode network provides
better QoS and is used to quickly forward sensor data
packets to the user. With this setting, data gathering in
heterogeneous WSNs has two steps. First, sensor nodes
transmit and relay measurements on multihop paths
toward any supernode (see Fig. 1). Then, once a data
packet encounters a supernode, it is forwarded using fast
supernode-to-supernode communication toward the user
application. Additionally, supernodes could process sensor
data before forwarding.

A study by Intel [14] shows that using a heterogeneous
architecture results in improved network performance such
as a lower data-gathering delay and a longer network
lifetime. Hardware components of the heterogeneous WSNs
are now commercially available [6].

We model topology control as a range assignment
problem, for which the communication range of each sensor
node must be computed. The objective is to minimize the
total transmission power for all sensors while maintaining
k-vertex disjoint communication paths from each sensor to
the set of supernodes. This way, the network can tolerate the

failure of up to k# 1 sensor nodes. In contrast with range
assignment in ad hoc wireless networks, this problem is not
concerned with connectivity between any two nodes. Our
problem is specifically tailored to heterogeneous WSNs, in
which data is forwarded from sensors to supernodes.

The contributions of this paper are the following: 1) we
formulate the k-degree Anycast Topology Control ðk-ATCÞ
problem for heterogeneous WSNs, 2) we propose three
solutions for solving the k-ATC problem, a) a
k-approximation algorithm, b) a centralized greedy algo-
rithm that minimizes the sensor maximum transmission
range, and c) a distributed and localized algorithm, and
3) we analyze the performance of these algorithms through
simulations.

The rest of this paper is organized as follows: In Section 2,
we present related work on fault-tolerant topology control
problems. Section 3 describes the heterogeneous WSN
architecture and the network model and introduces the
k-ATC problem. We continue in Section 4 with our solutions
for solving the k-ATC problem. Section 5 presents the
simulation results, and Section 6 concludes our paper.

2 RELATED WORK

The benefits of using heterogeneous WSNs, containing
devices with different capabilities, have been presented
recently in the literature. In [25], it is reported that when
properly deployed, heterogeneity can triple the average
delivery rate and provide a five-fold increase in the network
lifetime.

Thework in [19] introduces another type of heterogeneous
WSNs called actor networks, consisting of sensor nodes and
actor nodes. The role of actor nodes is to collect sensor data
and perform appropriate actions. This paper presents an
event-based coordination framework using linear program-
ming and a distributed solutionwith an adaptivemechanism
to trade off energy consumption for delay when event data
has to be delivered within a specific latency bound.

The majority of the existing work in fault-tolerant
topology control studies the k-vertex connectivity, requiring
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the existence of k-vertex disjoint paths between any
two nodes in the network. Such a requirement is more
appropriate for ad hoc wireless networks, where any
two nodes can be a source and a destination. In WSNs, data
is transmitted from sensors to the sink(s), so maintaining a
specific degree of fault tolerance between any two sensors is
not critical. However, it is rather important to have fault-
tolerant data collection paths between sensors and sink(s)
(or supernodes in our case).

A considerable amount of work ([1], [2], [11], [15], and
[17]) has been done on the fault-tolerant topology control
problem, with the objective of minimizing the total power
consumption while providing k-vertex connectivity be-
tween any two vertices. The majority of these algorithms
are centralized, and they propose approximation algo-
rithms for various topologies. Calinescu and Wan [2]
propose an algorithm with a performance ratio of four for
the two-connectivity problem. Jia et al. [15] propose a
3k-approximation algorithm, k $ 3, by first constructing
the ðk# 1Þth nearest neighbor graph and then augment-
ing it to k-connectivity by using one of the existing
minimum edge weight k-connected algorithms. The Fault-
Tolerant Cone-Based Topology Control (CBTC) algorithm
proposed by Bahramgiri et al. [1] is a distributed and
localized algorithm that achieves k-connectivity by having
each vertex increase its transmission power until either
the maximum angle between its two consecutive neigh-
bors is at most 2!

3k or its maximal power is reached.

The work in [16] and [21] address the fault-tolerant
topology control, with the objective of minimizing the
maximum power consumption. Ramanathan and Rosales-
Hain [21] propose a centralized greedy algorithm for
assuring biconnectivity ðk ¼ 2Þ that iteratively merges
two biconnected components until only one remains.
Li and Hou [16] introduce two algorithms for the
k-connectivity problem: one is centralized, and the other
is distributed and localized. The algorithms examine
edges in increasing order of their weight and select edges
only if k-connectivity is not satisfied. These algorithms
minimize the maximal power consumption between all
k-vertex connected topologies.

There are also previous work addressing k-connectivity in
a rooted graph. Frank and Tardos [8] study the k-connectivity
from the root to any other node, with the objective of
minimizing the total weight of the edges. They propose a
polynomial-time optimal solution using a maximum cost
submodular flow problem. Wang et al. [24] propose an

approximation algorithmwith ratio k for k-connectivity from
any node to the root and an approximation algorithm with
ratio OðnÞ for k-connectivity from the root to any node.
However, these algorithms are centralized.

Our work differs from [1], [2], [11], [15], [16], [17], [21],
[24] by considering a different architecture and a different
topology objective:

. We consider a heterogeneous WSN architecture
with multiple supernodes and are concerned with
providing k-connectivity from each sensor to the
set of supernodes.

. The authors of [1], [2], [11], [15], [16], [17], [21]
consider a homogeneous architecture and have, as
their objective, k-connectivity between any two
nodes.

. Wang et al. [24] use a heterogeneous architecture
with only one root (or supernode) and study
k-connectivity from the root to any node.

We use the framework in [24] to design our first centralized
algorithm Minimum Weight-Based Anycast Topology
Control (MWATCk), thus achieving a performance ratio k.
Additionally, we propose a centralized algorithm Fault-
Tolerant Global Anycast Topology Control (GATCk), which
minimizes the maximum transmission range, and a
distributed and localized algorithm Fault-Tolerant Distrib-
uted Anycast Topology Control (DATCk), which is feasible
for practical deployment of large-scale WSNs.

3 PROBLEM DEFINITION AND NETWORK MODEL

3.1 Heterogeneous Network Architecture
For networks that contain a large number of sensors (for
example, thousands of sensor nodes), it becomes infeasible
to network sensors using a flat network. As data is
forwarded hop by hop to the sink, it becomes inefficient
and unreliable to travel a long way in the WSN, depleting
the energy of the sensors participating in data relaying.

A solution that has received increasing attention recently
is the use of heterogeneous WSNs that contain devices with
different hardware capabilities. Three common types of
hardware heterogeneity are mentioned in [25]: computa-
tional heterogeneity, where some nodes have increased
computational power, link heterogeneity, where some
nodes have long-distance highly reliable communication
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links, and energy heterogeneity, where some nodes have
unlimited energy resources.

One architecture, which has been recently explored in
the literature, contains two types of wireless devices, as
presented in Fig. 1. The lower layer is formed by sensor
nodes with size and weight restrictions, low cost (projected
to be less than $1.00), limited battery power, short
transmission range, low data rate (up to several hundred
kilobits per second), and low duty cycle. The main tasks
performed by sensor nodes are sensing, data processing,
and data transmission/relaying. The dominant power
consumer is the radio transceiver [20].

The upper layer consists of resource-rich supernodes
overlaid on the sensor network, as illustrated in Fig. 1.
Supernodes can have two radio transceivers: one is for
communication with sensor nodes, and the other is for
communication with other supernodes. Supernodes have
more power reserves and better processing and storage
capabilities than sensor nodes. Wireless communication
links between supernodes have considerably longer ranges
and higher data rates, allowing the supernode network to
bridge remote regions of the interest area. Supernodes are
more expensive, and therefore, fewer are used than sensor
nodes. One of the main tasks performed by a supernode is
to transmit/relay data from sensor nodes to/from the sinks.
Other tasks can include sensor data aggregation, complex
computations, and decision making. Recently, hardware
platforms usable for supernode development have become
commercially available [6].

Various research work refer to resource-rich supernodes
with different names: gateways by Intel research [14], masters
by the Tenet architecture [10], microservers by [22], and
macronodes by [23]. Two practical implementations of hetero-
geneous WSNs in habitat-monitoring experiments are de-
scribed in [18] and [23]. In [18], the experiment monitors
seabird nesting environment and behavior in a small island
off the coast of Maine, whereas Wang et al. [23] investigate
task decomposition and collaboration in two-tiered hetero-
geneous WSNs consisting of sensor nodes used for data
sampling and supernodes (or macronodes) used to run the
algorithms for target classification and localization.

The presence of heterogeneous nodes in a sensor
network increases network lifetime and decreases the
average end-to-end delay. In heterogeneous WSNs, data
transmission from motes to the sink usually contains two
steps. First, motes send data packets to supernodes, and
then, supernodes send the packets to the sink. Network
lifetime is improved, since a smaller number of sensors are
involved in forwarding a data packet, thus saving energy
resources. The average end-to-end delay decreases, since
supernode network communication has a higher data rate
and since a packet is forwarded fewer times. A detailed
survey on heterogeneous WSNs is presented in [3].

3.2 Anycast Topology Control Problem
In this paper,we consider a heterogeneousWSNconsisting of
sensors and supernodes. The supernodes are predeployed in
the sensing area, they are connected, and their main task is to
relay data from sensor nodes to the user application. On the
other hand, sensor nodes are deployed randomly in the area
of interest. We assume that sensor nodes can adjust their
communication ranges up to a maximum value Rmax. When
each sensor is using a maximum transmission range Rmax,
there exist at least k paths from any sensor node to the set of
supernodes.

Our goal is to provide a reliable data-gathering infra-
structure from sensors to supernodes. We model this as the
objective to establish the transmission range of each sensor
such that 1) there exist k-vertex disjoint communication
paths from each sensor to supernodes and 2) the total
power consumed by all the sensor nodes is minimized. In
this paper, we do not address the supernode-to-supernode
communication.

The first condition is needed to guarantee that data
from every sensor reaches at least one supernode when up
to k# 1 sensor nodes fail. The second condition is needed
to ensure an energy-efficient design, which is an important
requirement in WSNs. We assume that once a packet with
data from a sensor reaches a supernode, it will be relayed
to the user application using a separate, more capable,
and less resource-constrained supernode network.

In this paper, instead of assuring the connectivity between
any two sensor nodes, we want to provide communication
paths from each sensor to one or more supernodes. A sensor
can communicate with another sensor or with a supernode if
the euclidean distance between nodes is less than or equal to
the sensor’s communication range.We consider the path loss
communication model, where the transmission power of a
sensor ni is pi ¼ r"i for a transmission range ri, where the
constant" is the power attenuation exponent, usually chosen
between 2 and 4. Our algorithms can also be used for a more
general power model pi ¼ r"i þ c, where c is a technology-
dependent positive constant [13]. The formal definition is
given as follows:

Definition 1 (the ðk-ATCÞ problem). Given a heterogeneous
WSN with M supernodes and N energy-constrained sensors
that can adjust their transmission ranges up to a maximum
value Rmax, determine the transmission range ri of each
sensor ni such that

1. there exist k-vertex disjoint communication paths
from every sensor to the set of supernodes, that is, the
k-vertex supernode connectivity, and

2. the total power consumed over all sensor nodes is
minimized, that is,

PN
i¼1 pi ¼ minimum.

Fig. 2a shows an example of a heterogeneousWSN, which
is 3-vertex supernode connected. This means that each
sensor node has three vertex-disjoint paths to supernodes.
For example, sensor n3 has three vertex-disjoint paths to
supernodes: ðn3; n1; n8Þ, ðn3; n4; n9Þ, and ðn3; n2; n9Þ.

Sensor nodes are prone to failure due to physical
damage or energy depletion, and thus, our goal is to
provide a topology that is fault tolerant to sensor node
failures. The k-ATC problem applies to heterogeneous
WSN applications where each sensor must have k-vertex
disjoint data collection paths at all times. An example of
such an application is when each sensor must periodically
report its measurements and the data reporting must be
fault tolerant to the failure of up to k# 1 sensor nodes.

3.3 Network Model
We consider a heterogeneous WSN consisting of
M supernodes and N sensor nodes, with M ' N . We
are interested in sensor-sensor and sensor-supernode
communications only. That is, we do not model the
supernode-to-supernode communication.

We represent the network topology with an undirected
weighted graph G ¼ ðV ;E; cÞ in the 2D plane, where
V ¼ fn1; n2; . . . ; nN; nNþ1; . . . ; nNþMg is the set of nodes,
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and E is the set of edges. The first N nodes in V are the
sensor nodes, and the last M nodes are the supernodes.
When we refer, in general, to a node ni, it means that ni

can be either a supernode or a sensor node. If we specify
the index i such that 1 ( i ( N , then we are referring to
a sensor node. If i > N , then ni refers to a supernode. We
define the set of edges E ¼ fðni; njÞjdistðni; njÞ ( Rmaxg,
where distðÞ is the euclidean distance function.

The cost function cðu; vÞ represents the power require-
ment for both nodes u and v to establish a bidirectional
communication link between u and v. Then, the cost
function is defined as cðu; vÞ ¼ ðdistðu; vÞÞ".

The directed graph G ¼ ðV ;E; cÞ of G is obtained by
replacing each edge ðu; vÞ in E with two directed edges
ðu; vÞ and ðv; uÞ in E. The two directed edges maintain the
same cost as cðu; vÞ in G.

We assume that each node has a unique id such as the
MAC address and that each node is able to gather its own
location information by using one of the localization
techniques for wireless networks such as [4].

Definition 2 (reachable neighborhood). The reachable
neighborhood !ðniÞ is the set of nodes that node ni can reach
by using the maximum transmission range Rmax,
!ðniÞ ¼ fnj 2 V jðni; njÞ 2 Eg.

For example, in Fig. 2a, the reachable neighborhood of node
n2 is !ðn2Þ ¼ fn1; n3; n4; n9g.
Definition 3 (weight function). Given two edges ðu1; v1Þ and

ðu2; v2Þ in E, the weight function w : E ! R satisfies
wðu1; v1Þ > wðu2; v2Þ if and only if

. distðu1; v1Þ > distðu2; v2Þ, or

.

distðu1; v1Þ ¼ distðu2; v2Þ AND maxfidðu1Þ; idðv1Þg
> maxfidðu2Þ; idðv2Þg;

or
.

distðu1; v1Þ ¼ distðu2; v2Þ AND maxfidðu1Þ; idðv1Þg
¼ maxfidðu2Þ; idðv2Þg AND minfidðu1Þ;

idðv1Þg > minfidðu2Þ; idðv2Þg:

The weight function w guarantees that two edges with
different end nodes have different weights. The weight
function definition in a directed graph is similar.

Definition 4 (k-vertex supernode connectivity). The hetero-
geneous network is k-vertex supernode connected if for any
sensor node ni 2 V , there are k pairwise vertex disjoint paths
from ni to the set of supernodes (to one or more supernodes).
Equivalently, the heterogeneous network is k-vertex super-
node connected if the removal of any k# 1 sensor nodes (and
all the related links) does not partition the network. That is,
for every sensor node ni, there will be a path from ni to a
supernode.

4 SOLUTIONS FOR THE k-ATC PROBLEM

In Section 4.1, we will introduce the reduced graph, an
auxiliary graph used in our solutions. We continue with
three solutions for the k-ATC problem. We start with a
k-approximation algorithm in Section 4.2, which also serves
as a benchmark in our simulations. We continue with a
centralized algorithm in Section 4.3 that has the important
property of minimizing the maximum power assigned to
all the sensors, thus balancing the energy consumption. In
Section 4.4, we present an algorithm that is distributed
and localized, properties which are important for a large-
scale WSN.

4.1 Reduced Graph
Given a graph GðV ;E; cÞ corresponding to a heterogeneous
WSN and constructed as specified in Section 3.3, we
construct its reduced graph GrðV r; Er; crÞ as follows: We
substitute the set of supernodes with only one node called
the root. Then, V r ¼ fn1; n2; . . . ; nN; n)g, where the first
N nodes are the sensor nodes, and the last node is the root.
Edges between sensors remain the same, whereas an edge
between a sensor and a supernode becomes an edge
between the sensor and the root. The weight of the edges
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Fig. 2. Construction of the reduced graph Gr and its directed version
G
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, where “ ” represents supernodes, “*” are sensor nodes, and “+” is

the root. (a) Graph G, with N ¼ 7, and M ¼ 3. (b) Reduced graph Gr.
(c) Directed reduced graph Gr.
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in Gr remains the same as in G. Fig. 2b shows an example of
the reduced graph Gr for a heterogeneous WSN with
seven sensor nodes and three supernodes.

If a sensor is connected to more than one supernode,
then only one edge is added in Gr, with the cost
corresponding to the distance to the closest supernode.
This is because our objective is to pass the sensor data to at
least one supernode while minimizing the energy con-
sumption. The pseudocode for constructing the reduced
graph is presented as follows:

Algorithm 1: construct reduced graph (G(V, E, c), N, M).
1: V r :¼ fnijni 2 V and i ( Ng [ fn)g;
2: Er :¼ #;
3: for each edge ðni; njÞ 2 E do
4: if ði ( NÞ AND ðj ( NÞ then
5: Er :¼ Er [ ðni; njÞ and crðni; njÞ :¼ cðni; njÞ;
6: else if (ði ( NÞ AND ðj > NÞ) OR (ði > NÞ AND

ðj ( NÞ) then
7: u :¼ minði; jÞ and v :¼ maxði; jÞ;
8: if ðnu; n)Þ =2 Er then
9: Er :¼ Er [ ðnu; n)Þ and crðnu; n)Þ :¼ cðnu; nvÞ;

10: else if ððnu; n)Þ 2 ErÞ AND ðcrðnu; n)Þ > cðnu; nvÞÞ
then

11: crðnu; n)Þ :¼ cðnu; nvÞ;
12: end if
13: end if
14: end for

We define the directed version G
rðV r; E

r
; crÞ of the

reduced graph as follows: Every undirected edge ðni; njÞ in
Gr between two sensors ni and nj is replaced with
two directed edges ðni; njÞ and ðnj; niÞ in G

r
. An edge in

Gr between a sensor and the root is replaced in G
r
with only

one directed edge from the sensor to the root. The reason is
that in our problem, we are concerned only with collecting
sensor data to supernodes, and we do not consider the
communication out of supernodes. On the other hand, for a
link between two sensors, we consider bidirectional com-
munication, since each sensor can forward data on behalf of
the other sensor. The costs of the edges in G

r
remain the

same as in Gr. Fig. 2c shows an example of constructing the
directed reduced graph G

r
.

The definitions for reachable neighborhood and weight
function remain unchanged for the reduced graphs Gr and
G

r
. Next, we define the k-vertex connectivity in the reduced

graph Gr.

Definition 5 (k-vertex connectivity in a reduced graph).
The reduced graph Gr is k-vertex connected to the root if for
any sensor node ni 2 V r, i ( N , there are k-vertex disjoint
paths from ni to the root n). Equivalently, the reduced graphGr

is k-vertex connected if the removal of any k# 1 sensor nodes
(and all the related links) does not partition the network.

Lemma 1. A heterogeneous WSN is k-vertex supernode
connected if and only if the corresponding reduced graph is
k-vertex connected to the root.

Proof. Let us consider any sensor node ni. Assume that
the network is k-vertex supernode connected. Then,
there are k-vertex disjoint paths between ni and the set
of supernodes. By replacing each supernode in the
path with the root n), we obtain k-vertex disjoint paths
between ni and n) in the reduced graph Gr.

Similarly, if Gr is k-vertex connected, then for any
sensor node ni, there are k-vertex disjoint paths between
ni and n). Then, for any such path ðni; ni1 ; . . . ; nij ; n

)Þ,
we can take an equivalent path in G by replacing n)

with a supernode nq, q > N , such that ðnij ; nqÞ 2 E and
cðnij ; nqÞ ¼ crðnij ; n

)Þ. These paths in G are k-vertex
supernode connected. tu

Definition 5 and Lemma 1 also apply to the directed
reduced graph G

r
.

4.2 Minimum Weight-Based Anycast Topology
Control

The MWATCk algorithm proposed in this section uses an
algorithm proposed by Frank and Tardos [8] to solve the
Min-Weight k-OutConnectivity problem.

The Min-Weight k-OutConnectivity problem is defined
as follows: Given a directed graph G and a distinguished
vertex r, the objective is to find a directed spanning
subgraph of G such that

1. the sum of the weight of the selected edges is
minimized, and

2. there are k-vertex disjoint paths between r and any
other vertex in the graph.

The main differences between the Min-Weight
k-OutConnectivity problem and the problem proposed in
this paper are that 1) we are concerned with InConnectivity,
that is, to provide disjoint paths from each vertex to r and
2) our objective is to minimize the sum of powers assigned
to each node rather than the sum of weights of all edges.

Frank and Tardos [8] propose an optimal solution for the
Min-Weight k-OutConnectivity problem solvable in poly-
nomial time by using a solution for the maximum cost
submodular flow problem. Let us call this solution FT in
our paper.

Wang et al. [24] apply the FT algorithm and obtain an
approximation algorithm with performance ratio k for the
Min-Power k-InConnectivity problem. Here, the objective is
to minimize the sum of the powers of each node when there
are k-disjoint paths from each node to the root. We use the
same framework for our k-ATC problem.

Algorithm 2: the MWATCk algorithm.
Input: GðV ;E; cÞ, a k-vertex supernode connected graph
Output: power assignment pi for each sensor node ni

1: Construct the reduced graph G
rðV r; E

r
; crÞ of G;

2: Construct G
0r
by reversing the direction of each edge in

G
r
and keeping the weight of each edge the same;

3: G
0
FT :¼ FTðG0r

; k; n)Þ;
4: Construct GFT by reversing each edge in G

0
FT and

keeping the weight of each edge the same;
5: for i :¼ 1 to N do
6: pi :¼ maxfcrðni; njÞjðni; njÞ is an edge in GFTg;
7: end for

In this algorithm, we first construct the reduced graph G
r

and then reverse the edge directions in order to
transform from the requirement of k-InConnectivity to the
requirement of k-OutConnectivity. Next, we apply the
FT algorithm [8] that optimally solves the Min-Weight
k-OutConnectivity problem. The result of the FT algorithm
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is a directed subgraph ofG
0r
. We reverse the edge directions

one more time to transform back to the k-InConnectivity
requirement. The power of each sensor node is assigned
such that it will cover all of its 1-hop neighbors in the
resulting subgraph.

The complexity of MWATCk is dominated by the
runtime of the FT algorithm. Gabow [9] has given an
implementation for the FT algorithm that runs in time
Oðk2n2mÞ, where n and m are the number of vertices and
number of edges in the graph. Thus, the complexity of the
MWATCk algorithm is Oðk2N2E

rÞ.
Theorem 1. MWATCk is an approximation algorithm with

performance ratio k for the k-ATC problem.

Proof. Let OPTr be an optimal solution for the Min-Power
k-InConnectivity problem in the reduced graph G

r
and

let OPT be an optimal solution to the k-ATC problem in
the graph G. From the way we construct G

r
starting from

G, we observe that any solution to the k-InConnectivity
problem in G

r
is also a solution to k-ATC problem in G,

and vice versa.
Let SOLr be a solution using the MWATCk

algorithm for the k-InConnectivity problem in G
r
, with

SOLr ¼
PN

i¼1 pi. Let SOL be the corresponding solution
to the k-ATC problem in G, where the power assigned to
each node is the same as in SOLr.

Since we used the FT algorithm, the solution SOLr has
a performance ratio k to the Min-Power k-InConnectivity
problem in a rooted graph (in our case G

r
). The formal

proof for the k-approximation ratio is presented in [24].
Then, we have the following inequality:

SOL ¼ SOLr ( k,OPTr ¼ k,OPT:

Thus, MWATCk is a k-approximation algorithm. tu

4.3 Fault-Tolerant Global Anycast Topology Control
In this section, we present a centralized greedy algorithm
GATCk that builds a k-vertex supernode connected sub-
graph and then assigns to each vertex the minimum power
needed to cover all of its 1-hop neighbors.

This algorithm has the property that it minimizes the
maximum transmission power for all the sensor nodes
among all other k-vertex supernode connected subgraphs.
This property is important, since it balances the power
consumption among all sensor nodes. The algorithm is
presented as follows:

Algorithm 3: the GATCk algorithm.
Input: GðV ;E; cÞ, a k-vertex supernode connected graph
Output: power assignment pi for each sensor node ni

1: Construct the directed reduced graph G
rðV r; E

r
; crÞ

of G;
2: Let Gk :¼ ðVk; Ek; crÞ with Vk :¼ V r and Ek :¼ E

r
;

3: Sort all edges in Ek in decreasing order of weight (using
Definition 3);

4: for each edge ðu; vÞ in the sorted order do
5: E

0
k :¼ Ek n fðu; vÞg;

6: if u is k-vertex connected to the root in the graph
ðVk; E

0
kÞ then

7: Ek :¼ E
0
k;

8: end if
9: end for

10: for i :¼ 1 to N do
11: pi :¼ maxfcrðni; njÞjnj 2 Vk and ðni; njÞ 2 Ekg;
12: end for

The GATCk algorithm starts from the k-vertex supernode
connected graph G, constructs its reduced graph Gr, and
then transforms it to a directed graph G

r
, as explained in

Section 4.1. Based on Lemma 1, Gr and G
r
are k-vertex

connected to the root. We examine all edges in G
r
in

decreasing order and remove an edge ðu; vÞ if after its
removal, sensor node u remains k-connected to the root.
Then, the algorithm computes the power pi for each sensor
node ni such that ni can directly communicate with any
other node joined by an edge in Ek.

By using network flow techniques [7], a query onwhether
two vertices are k-connected in a graph ðV ;EÞ can be
answered in OðE þ V Þ time for any fixed k. Therefore, the
complexity of GATCk is OðErðEr þ V rÞÞ ¼ OððErÞ2Þ.
Theorem 2 (correctness). If G is k-vertex supernode connected,

then the power assigned by GATCk to each sensor node

guarantees a k-vertex supernode-connected topology. Thus,

GATCk preserves the k-vertex supernode connectivity of G.

Proof. Since G is k-vertex supernode connected, the graphs
Gr and G

r
are k-connected to the root (see Lemma 1). We

start from a graph Gk :¼ G
r
and remove edges. We prove

that the resulting graph Gk remains k-connected at the
end of line 9 in the GATCk algorithm.

We show that if Gk is k-vertex connected to the root
before the removal of an edge ðu; vÞ, then it remains
k-vertex connected to the root after the edge removal, as
long as u remains k-vertex connected to the root. To show
that Gk is k-vertex connected to the root, we show that
after the removal of any set C of vertices, jCj ( k# 1, the
remaining sensor nodes are still connected to the root.

Let us take any sensor node ni. Before the removal of
ðu; vÞ, ni has k-vertex disjoint paths to the root, say,
p1; p2; . . . ; pk. If ðu; vÞ is not on any path p1; p2; . . . ; pk, then
the removal of ðu; vÞ does not affect ni’s connectivity. Let
us assume now that ðu; vÞ belongs to one of the paths,
say, ðu; vÞ 2 pk. If jCj < k# 1, then after the removal of C
and edge ðu; vÞ, ni is still connected to the root.

Consider now the case jCj ¼ k# 1 when any
k# 1 vertices are removed from the graph. The only
critical case is when one vertex is removed from each
path p1; p2; . . . ; pk#1 and edge ðu; vÞ is removed from the
path pk. This case is illustrated in Fig. 3. Node ni is still
connected to u along the path pk, and we will call this
path p01, which is a subpath of pk. Vertex u is k-vertex
connected to the root after the removal of ðu; vÞ, so there
are k-vertex disjoint paths between u and the root. Since
jCj ¼ k# 1, only k# 1 such paths can be broken, so after
the removal of C, there will still exist one path between u
and the root. Let us call it p02. Then, p

0
1 þ p02 will give us a

path between ni and the root.
Therefore, we conclude that Gk remains k-vertex

connected to the root after the removal of ðu; vÞ, as long
as u remains k-vertex connected to the root. tu
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Theorem 3. The maximum transmission range (or equivalently

power) among all the sensor nodes is minimized by GATCk.

Proof. We show this property by contradiction. Let ðu; vÞ be
the first edge that is not removed from Ek, as we

examine the list of decreasingly ordered edges by

weight. Then, u will have the maximum range between

all the sensor nodes in Gk.
Assume by contradiction that there exists a topology

eG that has the maximum transmission range from all the
sensor nodes less than crðu; vÞ. Then, the induced
topology eG does not contain any edge with cost greater
than or equal to crðu; vÞ. Since GATCk could not remove
the edge ðu; vÞ from Ek, it results that without the edge
ðu; vÞ, u is not k-connected to the root, thus violating the
connectivity correctness of eG. tu

4.4 Fault-Tolerant Distributed Anycast Topology
Control

DATCk is a distributed and localized algorithm that
efficiently assigns the power level of each sensor node such
that k-vertex supernode connectivity is preserved. The main
algorithm notations are introduced in Table 1.

Each node ni starts by constructing its localized
neighborhood !ðniÞ based on Hello messages exchanged
between neighbors with communication range Rmax. Each
sensor node ni starts a distributed process to decide its final
transmission power pi, as presented next in the DATCkðiÞ
algorithm:

Algorithm 4: the DATCkðiÞ algorithm.
1: pi :¼ pmin

i ;
2: if pmin

i ¼ pmax
i then

3: fi :¼ 1;
4: else
5: fi :¼ 0;
6: end if
7: Broadcastði; pi; fiÞ;
8: while fi ¼ 0 do
9: compute "pi, the minimum incremental power

needed to cover at least one neighbor in !ðniÞ # !0ðniÞ;
10: start timer t;
11: if broadcast message received from a neighbor nj

before t expires then
12: update !0ðniÞ and "pi;
13: if !0ðniÞ ¼ !ðniÞ then
14: fi :¼ 1;
15: Broadcastði; pi; fiÞ;
16: Return;
17: end if
18: end if
19: if timer t expires then
20: pi :¼ pi þ"pi;
21: update !0ðniÞ;
22: if !0ðniÞ ¼ !ðniÞ then

CARDEI ET AL.: ALGORITHMS FOR FAULT-TOLERANT TOPOLOGY IN HETEROGENEOUS WIRELESS SENSOR NETWORKS 551

Fig. 3. Case when k# 1 nodes are removed from the paths

p1; p2; . . . ; pk#1.

TABLE 1
DATCk Notations
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23: fi :¼ 1;
24: end if
25: Broadcastði; pi; fiÞ;
26: end if
27: end while
28: Return;

Sensor node ni computes pmax
i and pmin

i , that is, the power
needed to reach the farthest neighbor in !ðniÞ and the first k
neighbors in !ðniÞ, respectively. Each sensor node ni uses
an iterative process to establish its final power, starting from
pmin
i . The final power pi selected by node ni will be between

pmin
i and pmax

i . In order for a node to be k-vertex connected, it
must have at least k disjoint neighbors. Therefore, its
transmission power must cover the k closest neighbors,
resulting in pi $ pmin

i .
The goal of the algorithm is to find a minimum

transmission power pi of node ni, pi 2 ½pmin
i ; pmax

i ., such that
each node nj in!ðniÞ is eitherwithin communication range ri
of node ni or there exist k-vertex disjoint paths between ni

and nj. When this condition is met, node ni declares its
current power estimate as its final power assignment by
setting fi to 1.

Every node ni maintains pj value of each neighbor
nj 2 !ðniÞ. We assume that a node ni has a complete
topological view of its 1-hop neighborhood and this is a
directed asymmetric graph Gni , where nodes have different
communication ranges. The edge set of this topology
changes over time (new edges are added), as ni receives
advertisements from its neighbors. A node ni can compute
the connectivity between any two 1-hop neighbors if
nodes broadcast their location or their 1-hop neighbors in
the Hello messages.

The algorithm executes in at most j!ðniÞj# k rounds
(or iterations). In each round, power level pi is minimally
incremented with "pi such that at least one node in !ðniÞ #
!0ðniÞ is added to !0ðniÞ. As specified in Table 1, !0ðniÞ
represents the set of neighbors that are either within the
range ri of ni or those nodes that can be reached from ni

through k-vertex disjoint paths. The value "pi can easily be
computed, since node ni maintains the distance and location
information for all nodes in !ðniÞ. The algorithm is
completed when !ðniÞ ¼ !0ðniÞ.

All broadcast messages that are sent to advertise new
power-level updates are sent with power level pmax ¼ R"

max.
If during the backoff interval, a broadcast message is
received from a neighbor in !ðniÞ, then !0ðniÞ and "pi are
updated before continuing the backoff waiting. When
node ni decides to broadcast its advertisement, it updates
its power level pi and neighboring set !0ðniÞ in lines 20 and
21 of the DATCk algorithm.

The rounds should be designed to have each node
advertise its new power estimate once, in the event that the
node has not establish its final power yet. Ideally, nodes send
the broadcast without colliding with their neighbors’
advertisement. To avoid simultaneous updates among
neighbors, a backoff scheme is used. Each node backs off
a time inversely proportional to its calculated gain before
sending a broadcast. The gain can be computed, for example,
as pmax # ðpi þ"piÞ. In this case, nodes with a smaller power
level will advertise earlier, thus helping the nodes with
larger transmission power. This approach could help
balance power consumption among sensor nodes.

The complexity of the DATCk algorithm run by each
node ni is polynomial in the total number of nodes N þM.
Let us denote the maximum node degree as ", that is,
" ¼ maxi¼1::N j!ðniÞj. The complexity of DATCk is Oð"5Þ.
This is because for a node ni, there are at most Oð"Þ rounds,
the time to update "pi is at most Oð"3Þ, and during the
back off, at most " neighbor updates can be received.

The message complexity of a sensor node ni can be
summarized as follows: Assuming an ideal MAC protocol
with no collisions and retransmissions, sensor ni transmits
at most 1þ"# k ¼ Oð"Þ messages. A Hello message is
transmitted at the beginning of the protocol for neighbor
discovery. Then, the algorithm has at most "# k rounds,
and at most one message is transmitted in each round. Since
each sensor has at most " neighbors within the commu-
nication range and each transmits Oð"Þ messages, the
number of messages received by sensor ni is Oð"2Þ.
Theorem 4 (correctness). If G is k-vertex supernode

connected, then the power-level assignment provided by
the DATCk algorithm guarantees a k-vertex supernode-
connected topology.

Proof. For simplicity of discussion, let us consider G’s
reduced graph Gr and its directed version G

r
, both being

k-connected to the root.
Our proof is by induction. The starting graph G

r
is the

base case, corresponding to a transmission power pmax
i for

any sensor ni. We remove edges from this graphwhenwe
set the power of a node ni to a value less than pmax

i . For the
inductive step, let us assume that the current graph is
k-connected to the root and that an edge ðni; njÞ is removed,
or equivalently, ni’s final range assignment ri < dist
ðni; njÞ. In conformity with the DATCk algorithm, this
happenswhenni remainsk-vertex connected tonj after the
removal of ðni; njÞ. This is illustrated in Fig. 4, where
sensor ni does not have to reach nj directly, since there are
k other disjoint paths between ni and nj in !ðniÞ.

We show that any sensor node nu maintains its
k-vertex connectivity to the root after the removal of
ðni; njÞ. For this, we show that the removal of any set C
of vertices, where jCj ( k# 1, and nu =2 C, does not affect
the connectivity of nu to the root.

Before the removal of ðni; njÞ, nu has k-vertex
disjoint paths to the root, say, p1; p2; . . . ; pk. If ðni; njÞ is
not on any path p1; p2; . . . ; pk, then nu’s connectivity is not
affected. Assume now that ðni; njÞ belongs to one of
the paths, say, ðni; njÞ 2 pk. If jCj < k# 1, then after the
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removal of C and edge ðni; njÞ, nu is still connected to
the root.

Let us now consider jCj ¼ k# 1. The only critical case
is when one vertex is removed from each path
p1; p2; . . . ; pk#1 and edge ðni; njÞ is removed from the
path pk. Node nu is still connected to ni along the path pk,
and we will call this path (which is a subpath of pk) p01.
Node nj is still connected to the root along the path pk,
and we will call this path (which is a subpath of pk) p03.
Vertex ni is k-vertex connected to the node nj, so after the
removal of C, only k# 1 such paths can be broken. It
follows that ni is still connected to nj, and we will call
this path p02. Then, p01 þ p02 þ p03 will give us a path
between nu and the root.

Therefore, we conclude that the DATCk algorithm
assigns power levels to nodes in such a way that
guarantees a k-vertex supernode-connected topology. tu
Fig. 5a shows a sample network with 20 sensor nodes and

three supernodes ðk ¼ 2;M ¼ 3Þ. Fig. 5b is the resulting
topology after applying GATCk, and Fig. 5c is the one after
DATCk. We can see thatGATCk can reduce the transmission
ranges of the sensor nodes more significantly thanDATCk.

4.5 Extension of DATCk to an h-hop Neighborhood
In the DATCk algorithm discussed above, a sensor node ni

makes decisions based on the information from its 1-hop
neighbors, which is the set !ðniÞ. In deciding whether to
incrementally increase its power to directly cover a
neighbor, node ni checks whether, in its local view, there
are k-disjoint paths to that particular neighbor. If such
k disjoint paths are identified, node ni does not need to

cover its neighbor directly. Otherwise, ni will increase its
power so as to cover that neighbor directly.

In this section, we extend theDATCk algorithm such that
each sensor nodemaintains topological information about its
h-hop neighborhood, and we call this extensionDATCh

k . The
h-hop neighborhood is maintained by requiring each broad-
cast message to be forwarded h hops by using a time to live
equal to h. By using an h-hop neighborhood, usually for small
h, the algorithm is still localized, and the main advantage is
that a larger neighborhood is used to search for k disjoint
paths. Therefore, smaller node power assignments are
expected. The trade-off is a highermessage complexity, since
each updatemessage is forwarded h hops. Simulation results
are presented in Section 5.

The DATCh
k ðiÞ algorithm has the same pseudocode as

DATCkðiÞ, with the observation that the BroadcastðÞ mes-
sages are sent overhhops. In addition, the last twodefinitions
in Table 1 have to be updated, as presented in Table 2.

5 SIMULATION

In this section, we present the results of our simulation. We
analyze and compare the performance of MWATCk,
GATCk, DATCk, and DATCh

k with various parameters.
We use CPLEX [5] to implement MWATCk in a small-scale
network. The other two approaches are tested on a custom
simulator using C++ in a large-scale network.

5.1 Simulation Environment and Settings
The sensors are deployed in a 100 m , 100 m area. The
supernodes are uniformly deployed in this area. The
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Fig. 5. Examples of DATCk and GATCk ðk ¼ 2;M ¼ 3Þ. (a) Original topology. (b) GATCk. (c) DATCk.

TABLE 2
DATCh

k Notations
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following parameters and their trade-offs are considered in
the simulation:

1. The network size N . We vary N to examine the
scalability of the proposed algorithms. In the
small-scale network, the network size is varied
from 10 to 50. In the large-scale network, it is in
the range of 100 to 500.

2. The number of supernodes M. We set M to 1 and 3
for small-scale networks and between 2 and 10 in
large-scale networks.

3. The value of k. We use 2 and 4 as the values of k in the
simulation. We also set k to be 1 percent ofN to study
thecasewhenk is apercentageof thenumberofnodes.

4. The power attenuation exponent ". We use 2 and 4
as the values in the simulation.

5. The number of hops h of the local neighborhood in
DATCh

k . We use 1 to 3 as the values of h.
6. The initial sensor transmission rangeRmax. In order to

guarantee that the WSN is k-vertex supernode
connected,we set the initial sensor transmission range
ina small-scalenetwork tobe50m, and ina large-scale
network, it is 20 m for k ¼ 2 and 40 m for k ¼ 4.

A sample network is discarded if it is not k-vertex
supernode connected with its initial settings. For each
tunable parameter, the simulation is repeated 100 times.
The performance metrics are listed as follows:

1. The total power consumption. This is the summation
of power consumption of each sensor (according to
its final transmission range).

2. The maximum transmission power among all the
sensors. This is for measuring the balance of energy
consumption among all the sensors.We also compute
the standard deviation of energy consumption of the
nodes in the network to show the balance degree.

3. The reduction ratio of both the total power con-
sumption and the maximum power consumption.
We use the initial sensor transmission range to
calculate the original power consumption.

5.2 Simulation Results
Fig. 6 shows the comparison of MWATCk, GATCk, and
DATCk in a small-scale network, where N varies from 10 to
50, M is 1 or 3, k is 2, and " is 2. In Fig. 6a, we compare the
performance of GATCk and DATCk with MWATCk, which

we proved has a performance ratio of k. We observe that
GATCk performs close toMWATCk, whereas the distributed
algorithm DATCk has its total power doubled in general.
When M is 3, less power is needed than when M is 1. Thus,
more supernodes scattered in the network help preserve the
k-vertex supernode connectivity.

With the increase in the number of sensors, the total
power increases. However, as shown in Fig. 6a, the rate of
increase of power is lower than that of sensors. This is
because with more sensors, the total power tends to
increase, but the power consumption for each sensor is
reduced. Fig. 6b is the maximum power comparison. With
the increase in the number of sensors, the maximum power
decreases for all approaches. GATCk has the smallest
maximum power, and DATCk has the largest one for both
M ¼ 1 and M ¼ 3. When M is larger, the maximum power
is smaller for all approaches. These simulations verify our
theoretical result that GATCk minimizes the maximum
transmission range between all sensors.

Fig. 7 is the comparison of GATCk and DATCk in a
large-scale network, where N varies from 100 to 500, M is 3,
" is 2, and k is 2 or 4. Fig. 7a is the total power consumption
comparison. We can see thatGATCk has better performance
than DATCk, and the power consumption is small when
k is 2. When k is 2, the power consumption increases with
the number of sensors. However, when k is 4, the power
consumption decreases slightly. This is because when k is
large, the increased number of sensors increases the power
consumption and helps each sensor reduce its transmission
power. The latter effect is more significant than the former
one. Fig. 7b is the maximum power comparison. With the
increase in the number of sensors, the maximum power
decreases for both approaches. GATCk has smaller max-
imum power than DATCk. When k is 4, a larger maximum
power is needed.

Fig. 7c is the corresponding reduced rates of the total
power consumption. We compute the reduced rate of the
total power consumption as 1# ðp1 þ p2 þ . . .þ pNÞ=
ðpmax ,N). GATCk has larger reduction rate than DATCk

in terms of the total power. All of the reduction rates
increase with the number of sensors. The increase of power
consumption in both GATCk and DATCk is small with the
growth of the number of sensors, whereas the initial power
consumption increases linearly. Fig. 7d is the standard
deviation of the energy consumption of each node in the
network. GATCk has a more balanced energy consumption
than DATCk. A larger k results in a more balanced energy
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consumption scheme. In addition, when the number of
deployed nodes increases, the energy consumption among
nodes tends to be more even.

Fig. 8 is the analysis of GATCk and DATCk, with
different values for the parametersM, ", and k. Figs. 8a and
8b show the resulting power consumption when " is 4 in
large-scale networks. We setM ¼ 3 and k ¼ 2, 4. We can see
that these two figures are similar to Figs. 7a and 7b, except
that the difference among all the curves is more significant.

Figs. 8c and 8d show the variation of the total power and
the maximum power with the number of supernodes when
N ¼ 200," ¼ 2, and k ¼ 2, 4.Wecan see thatwith the increase
inM, the power consumption is decreased. This is consistent
with the results shown in Figs. 6a and 6b. Again, when k is 4,
more power is necessary, andGATCk has better performance
than DATCk. We also observe that the decrease in power in
DATCk is more significant than that of GATCk.

Figs. 8e and 8f show the variation of total power and the
maximum power when " ¼ 2, M ¼ 3, and k is 1 percent of
the number of nodes in the network. We can see that the
total power consumption increases with the number of
nodes and with the value of k but not significantly,
especially when the number of nodes is relatively large.
The maximum power decreases when the number of nodes
increases, since more nodes provide more chances for the
connectivity. Compared with a fixed k, increasing the value
of k with the number of nodes leads to larger energy
consumption. However, the increase in energy consump-
tion is insignificant.

Fig. 9 shows the performance of DATCh
k with different

values of h (M ¼ 3, k ¼ 2, and " ¼ 2). Figs. 9a and 9b are the

comparisons in the total power consumption and the
maximumpower consumption, respectively.We can see that
with the increase in h, both power consumptions decrease.
This is becausewithmore hops of neighborhood information,
a node has more chances to find k-disjoint paths for its
neighbors and thus does not need to increase its power to
cover these neighbors. Figs. 9c and 9d show the power
reduction rate based on Figs. 9a and 9b. A larger value of h
helps increase the reduced rate of both the total power
consumption and the maximum power consumption. The
power reduction of h being 3 is less significant than that of 2.
Therefore, we know that a relatively small h, 2 or 3, is enough
for a good trade-off between performance and overhead.

The simulation results can be summarized as follows:

1. MWATCk, which is a k performance ratio algorithm,
has the best performance in terms of the total power
consumption. GATCk has the best performance in
terms of the maximum power consumption. This
verifies our theoretical result that GATCk minimizes
the maximum transmission power between all the
sensors.

2. More supernodes help reduce the power consump-
tion of each sensor. Larger k demands larger power
consumption in all approaches.

3. When the number of sensors N increases, the total
power consumption increases slightly for both
GATCk and DATCk if k is 2, and it decreases
slightly if k is 4. The maximum power consumption
decreases with the growth of N .
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Fig. 7. Comparison of GATCk and DATCk in the large-scale network. (a) Total power. (b) Maximum power. (c) Reduced rate of total power.

(d) Standard deviation.
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4. The reduction rate in termsof both the total power and
the maximum power increases with the growth of N .

5. When " increases from 2 to 4, the difference between
GATCk and DATCk is more significant.

6. When h increases in DATCh
k , both the total power

consumption and the maximum power consumption
can be reduced. A small value of h can provide a
good performance.

6 CONCLUSIONS

In this paper, we addressed the k-ATC problem in
heterogeneous WSNs, with the objective of minimizing
the total energy consumption while providing k-vertex

independent paths from each sensor node to one or more
supernodes. Such a topology provides the infrastructure for
fault-tolerant data-gathering applications robust to the
failure of up to k# 1 sensors.

We proposed three solutions to this problem:
two centralized approaches MWATCk and GATCk and
one distributed and localized algorithm DATCk. MWATCk

is an approximation algorithmwith performance ratio k, and
GATCk has the property that it minimizes the maximum
power between all sensor nodes. Simulation results show
that among the three proposed algorithms, MWATCk has
the best performance in terms of the total power consump-
tion, and GATCk has the best performance in terms of the
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Fig. 8. Comparison ofGATCk andDATCk when " ¼ 4, with increasingM and with increasing k. (a) Total power (" ¼ 4). (b) Maximum power (" ¼ 4).

(c) Total power, differentM. (d) Maximum power, differentM. (e) Total power when k is 1 percent ofN . (f) Maximum power when k is 1 percent ofN .
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maximum power consumption. DATCk consumes the most
power, sometimes as high as twice that ofGATCk. However,
DATCk is a distributed and localized algorithm, and this
is an important property in WSNs, showing that this
algorithm is scalable and practical for large networks.

For our future work, we plan to extend our work for
applications that require a fault-tolerant bidirectional
topology that provides communication paths both from
sensors to supernodes and from supernodes to sensors.
Another related problem that we will address is deriving
the value of k when we know the network topology.
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